Log in

The effect of Low Temperature and Nitrogen Starvation on the Morphological and Physiological Characteristics of Two Strains of Green Microalgae of the Genus Lobosphaera sp. (Chlorophyta, Trebouxiophyceae)

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of nitrogen starvation and, for the first time, low temperature, as well as their simultaneous effect, on the physiology and ultrastructure of cells of microalgae of the genus Lobosphaera (Chlorophyta, Trebouxiophyceae) was studied. Nitrogen deficiency in both strains led to a decrease in the content of chlorophyll by three times and an increase in the proportion of carotenoids by two times. A decrease in the content of both chlorophyll and carotenoids was observed at +10°C. The simultaneous effect of two factors resulted in a threefold decrease in the chlorophyll content in NAMSU 924/2 and a sixfold decrease in NAMSU (CALU) 1497; the proportion of carotenoids in both strains decreased by 1.5–2 times. Data on ultrastructural changes in cells of microalgae of the genus Lobosphaera under the influence of stress factors have been obtained. A similar nature of the response in both strains to stress conditions was noted. Nitrogen deficiency led to the accumulation of numerous lipid droplets in the cytoplasm of cells along the cell wall. Long-term incubation on a nitrogen-free medium led to the filling of the entire volume of cells with lipid droplets, disassembly of the membrane system of chloroplasts, that reduction in sizeand being located between densely lying lipid droplets. At low temperatures, the number of thylakoids decreased, while the interthylakoid space and the size of chloroplasts increased. With simultaneous exposure to nitrogen starvation and low temperature, numerous lipid droplets accumulated, the number of thylakoids decreased, the interthylakoid space and the size of the chloroplast increased, which was noted under separate exposure to stress factors. The pyrenoid in both strains did not undergo significant changes in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Borowitzka, M.A., Microalgae for aquaculture: opportunities and constraints, J. Appl. Phycol., 1997, vol. 9, p. 393. https://doi.org/10.1023/A:1007921728300

    Article  Google Scholar 

  2. Michalak, I. and Chojnacka, K., Algal extracts: technology and advances, Eng. Life Sci., 2014, vol. 14, p. 581. https://doi.org/10.1002/elsc.201400139

    Article  CAS  Google Scholar 

  3. Chojnacka, K., Wieczorek, P., Schroeder, G., and Michalak, I., Algae Biomass: Characteristics and Applications. Towards Algae-Based Products, Springer, 2018, vol. 8. https://doi.org/10.1007/978-3-319-74703-3

    Book  Google Scholar 

  4. Solovchenko, A.E., Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses, Russ. J. Plant Physiol., 2012, vol. 59, p. 167.

    Article  CAS  Google Scholar 

  5. Guschina, I.A. and Harwood, J.L., Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 2006, vol. 45, p. 160. https://doi.org/10.1016/j.plipres.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  6. Morgan-Kiss, R.M., Priscu, J., Pocock, T., Gudynaite-Savitch, L., and Norman, P.A., Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments, Microbiol. Mol. Biol. Rev., 2006, vol. 70, p. 222. https://doi.org/10.1128/MMBR.70.1.222-252.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohen, Z., Khozin-Goldberg, I., Adlerstein, D., and Bigogno, C., The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae, Biochem. Soc. Trans., 2000, vol. 28, p. 740. https://doi.org/10.1042/bst0280740

    Article  CAS  PubMed  Google Scholar 

  8. Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A., Commercial applications of microalgae, J. Biosci. Bioeng., 2006, vol. 101, p. 87. https://doi.org/10.1042/bst0280740

    Article  CAS  PubMed  Google Scholar 

  9. Ibañez, E. and Cifuentes, A., Benefits of using algae as natural sources of functional ingredients, J. Sci. Food Agric., 2013, vol. 93, p. 703. https://doi.org/10.1002/jsfa.6023

    Article  CAS  PubMed  Google Scholar 

  10. Ścieszka, S. and Klewicka, E., Algae in food: A general review, Crit. Rev. Food Sci. Nutr., 2019, vol. 59, p. 3538. https://doi.org/10.1080/10408398.2018.1496319

    Article  CAS  PubMed  Google Scholar 

  11. Mudimu, O., Koopmann, I.K., Rybalka, N., Friedl, T., Schulz, R., and Bilger, W., Screening of microalgae and cyanobacteria strains for α-tocopherol content at different growth phases and the influence of nitrate reduction on α-tocopherol production, J. Appl. Phycol., 2017, vol. 29, p. 2867. https://doi.org/10.1007/s10811-017-1188-1

    Article  CAS  Google Scholar 

  12. Mal’tsev, E.I., Mal’tseva, I.A., Mal’tseva, S.Yu., and Kulikovskiy, M.S., Biotechnological potential of a new strain of Bracteacoscus bulatus (Sphaeropleales, Chlorophyta) as a promising producer of omega-6 polyunsaturated fatty acids, Fiziol. Rast., 2020, vol. 67, p. 96. https://doi.org/10.31857/S0015330320010121

    Article  Google Scholar 

  13. Stanier, R.Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G., Purification and properties of unicellular blue-green algae (order Chroococcales), Bacteriolog. Rev., 1971, vol. 35, p. 171. https://doi.org/10.1128/br.35.2.171-205.1971

    Article  CAS  Google Scholar 

  14. Gorelova, O.A., Baulina, O.I., Solovchenko, A.E., Chekanov, K.A., Chivkunova, O.B., Fedorenko, T.A., and Lobakova, E.S., Similarity and diversity of the Desmodesmus spp. microalgae isolated from associations with White Sea invertebrates, Protoplasma, 2015, vol. 252, p. 489. https://doi.org/10.1007/s00709-014-0694-0

    Article  CAS  PubMed  Google Scholar 

  15. Reynolds, E.S., The use of lead citrate of high pH as an electron opaque strain in electron microscopy, J. Cell. Biol., 1963, vol. 17, p. 208. https://doi.org/10.1083/jcb.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Folch, J., Lees, M., and Stanley, G.S., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, p. 497. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  CAS  PubMed  Google Scholar 

  17. Kates, M., Lipid extraction procedures, in Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, Burden, R.H. and van Knippenberg, P.H., Eds., Amsterdam: Elsevier Science, 1986, 2nd ed., p. 106.

  18. Wellburn, A.R., The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, J. Plant Physiol., 1994, vol. 144, p. 307. https://doi.org/10.1016/S0176-1617(11)81192-2

    Article  CAS  Google Scholar 

  19. Steward, F.C. and Mühlethaler, K., The structure and development of the cell-wall in the Valoniaceae as revealed by the electron microscope, Ann. Bot., 1953, vol. 17, p. 295. https://doi.org/10.1093/oxfordjournals.aob.a083351

    Article  CAS  Google Scholar 

  20. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Meth. Enzym., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  21. Cunningham, Jr.F.X. and Gantt, E., Genes and enzymes of carotenoid biosynthesis in plants, Annu. Rev. Plant Biol., 1998, vol. 49, p. 557. https://doi.org/10.1146/annurev.arplant.49.1.557

    Article  CAS  Google Scholar 

  22. Takaichi, S., Carotenoids in algae: distributions, biosynthesis and functions, Marine drugs, 2011, vol. 9, p. 1101. https://doi.org/10.3390/md9061101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borowitzka, M., Algal biotechnology products and processes—matching science and economics, J. Appl. Phycol., 1992, vol. 4, p. 267. https://doi.org/10.1007/BF02161212

    Article  Google Scholar 

  24. Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., and Cohen, Z., Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid, Phytochem., 2002, vol. 60, p. 497. https://doi.org/10.1016/S0031-9422(02)00100-0

    Article  CAS  Google Scholar 

  25. Leman, J., Oleaginous microorganisms: an assessment of the potential, Adv. Appl. Microbiol., 1997, vol. 43, p. 195. https://doi.org/10.1016/S0065-2164(08)70226-0

    Article  CAS  PubMed  Google Scholar 

  26. Goodson, C.R.R., Wang, Z.T., and Goodenough, U., Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost, Eukaryotic cell, 2011, vol. 10, p. 1592. https://doi.org/10.1128/EC.05242-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fan, J., Andre, C., and Xu, C., A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii, FEBS Letters, 2011, vol. 585, p. 1985. https://doi.org/10.1016/j.febslet.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  28. Schüler, L.M., Schulze, P.S., Pereira, H., Barreira, L., León, R., and Varela, J., Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae, Algal Res., 2017, vol. 25, p. 263. https://doi.org/10.1016/j.algal.2017.05.025

    Article  Google Scholar 

  29. Kugler, A., Zorin, B., Didi-Cohen, S., Sibiryak, M., Gorelova, O., Ismagulova, T., Kokabi, K., Kumari, P., Lukyanov, A., Boussiba, S., Solovchenko, A., and Khozin-Goldberg, I., Long-chain polyunsaturated fatty acids in the green microalga Lobosphaera incisa contribute to tolerance to abiotic stresses, Plant Cell Physiol., 2019, vol. 60, p. 1205. https://doi.org/10.1093/pcp/pcz013

    Article  CAS  PubMed  Google Scholar 

  30. Merzlyak, M.N., Chivkunova, O.B., Gorelova, O.A., Reshetnikova, I.V., Solovchenko, A.E., Khozin-Goldberg, I., and Cohen, Z., Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta), J. Phycol., 2007, vol. 43, p. 833. https://doi.org/10.1111/j.1529-8817.2007.00375.x

    Article  CAS  Google Scholar 

  31. Solovchenko, A.E., Khozina-Goldberg, I., Didi-Cohen, S., Cohen, Z., and Merzlyak, M.N., Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa, Russ. J. Plant Phys., 2008, vol. 55, p. 455.

    Article  CAS  Google Scholar 

  32. Solovchenko, A.E., Merzlyak, M.N., Chivkunova, O.B., Reshetnikova, I.V., Khozina-Goldberg, I., Didi-Cohen, S., and Cohen, Z., Effects of illumination and nitrogen starvation on accumulation of arachidonic acid by the microalga Parietochloris incisa, Mosc. Univ. Biol. Sci. Bull., 2008b, vol. 63, p. 44.

    Google Scholar 

  33. Temraleeva, A.D., Green algae species Bracteacoscus bulatus and B. occidentalis (Sphaeropleales, Chlorophyta) new to the soil algae flora of Russia, Vopr. Sovrem. Al’gol., 2018, vol. 1, p. 14.

  34. Watanabe, S., Hirabayashi, S., Boussiba, S., Cohen, Z., Vonshak, A., and Richmond, A. Parietochloris incisa comb. nov. (Trebouxiophyceae, Chlorophyta), Phycolog. Res., 1996, vol. 44, p. 107. https://doi.org/10.1111/j.1440-1835.1996.tb00383.x

    Article  Google Scholar 

  35. Khozin-Goldberg, I., Shrestha, P., and Cohen, Z., Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa, BBA—Mol. Cell Biol. Lipids, 2005, vol. 1738, p. 63. https://doi.org/10.1016/j.bbalip.2005.09.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, grant no. 20–74–10028 and performed within the framework of the Interdisciplinary Scientific and Educational School of Moscow University Molecular Technologies of Living Systems and Synthetic Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Shibzukhova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as research subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibzukhova, K.A., Chivkunova, O.B. & Lobakova, E.S. The effect of Low Temperature and Nitrogen Starvation on the Morphological and Physiological Characteristics of Two Strains of Green Microalgae of the Genus Lobosphaera sp. (Chlorophyta, Trebouxiophyceae). Russ J Plant Physiol 70, 55 (2023). https://doi.org/10.1134/S1021443722700091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722700091

Keywords:

Navigation