Log in

Prokaryotic-Type Aspartate Aminotransferase in Sorghum Leaves: Localization, Distribution and Potential Role

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The first part of this work consists in the identification of a prokaryotic-type bifunctional enzyme (aspartate aminotransferase, PT-AAT) in photosynthetic cells of Sorghum–sudangrass hybrid seeds Sorghum × drummondii (Nees ex Steud.) Millsp. and Chase. The results obtained show that the enzyme is constituted by a subunit of 45 kDa immunologically similar to the enzymes of C3 plants and gymnosperms. This result suggests a high degree of conservation of the PT-AAT in higher plants. To investigate whether the expression of AAT is associated with the differentiation of leaves, we analyzed the chlorophyll levels and AAT, glutamine synthetase (GS), glutamate synthase (GOGAT), isocitrate dehydrogenase (IDH), Rubisco and nitrate reductase (NR) contents in serial sections of the leaves. The chlorophyll content was high in the top sections; and then decreased toward basal sections in a continuous gradient. The Rubisco and NR contents matched the pattern of chlorophyll in the leaves with high levels in the aged section and very low levels in the basal sections. In contrast to chlorophyll, Rubisco and NR contents, GS2 and Fd-GOGAT polypeptides markedly increased from the top to the basal sections of leaves. However the patterns of AAT and IDH polypeptides did not change in different sections. In the second part of this work, to determine the relative localization of AAT, mesophyll cells (MCs) and bundle-sheath cells (BSCs) of sorghum leaves were separated by cellulase and macerase digestion. PT-AAT protein was most abundant in MC fraction than BSC fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Koteyeva, N.K., Voznesenskaya, E.V., Cousins, A.B., and Edwards, G.E., Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy, J. Exp. Bot., 2014, vol. 65, p. 3525.

    Article  CAS  Google Scholar 

  2. Sage, R.F., Sage, T.L., and Kocacinar, F., Photorespiration and the evolution of C4 photosynthesis, Annu. Rev. Plant Biol., 2012, vol. 63, p. 19.

    Article  CAS  Google Scholar 

  3. Mallmann, J., Heckmann, D., Bräutigam, A., Lercher, M.J., Weber, A.P., Westhoff, P., and Gowik, U., The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria, Elife3, 2014, vol. 3: e02478.

  4. Weissmann, S., Ma, F., Furuyama, K., Gierse, J., Berg, H., Shao, Y., Taniguchi, M., Allen, D.K., and Brutnell, T.P., Interactions of C4 subtype metabolic activities and transport in maize are revealed through the characterization of DCT2 mutants, Plant Cell, 2016, vol. 28, p. 466.

    Article  CAS  Google Scholar 

  5. Ireland, R.J. and Joy, K.W., Plant transaminases, in Transaminases, Christen, P. and Metzler, D.E., Eds., New York: Wiley, 1985, vol. 2, p. 376.

    Google Scholar 

  6. De la Torre, F., de Santis, L., Suárez, M.F., Crespillo, R., and Cánovas, F.M., Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism, Plant J., 2006, vol. 46, p. 414.

    Article  CAS  Google Scholar 

  7. De la Torre, F., Suárez, M.F., de Santis, L.D., and Cánovas, F.M., The aspartate aminotransferase family in conifers: biochemical analysis of a prokaryotic-type enzyme from maritime pine, Tree Physiol., 2007, vol. 27, p. 1283.

    Article  CAS  Google Scholar 

  8. Marcondes, J. and Lemos, E.G., Nitrogen metabolism in citrus based on expressed Tag analysis, in Advances in Citrus Nutrition, Netherlands: Springer, 2012, p. 245.

    Google Scholar 

  9. De la Torre, F., El-Azaz, J., Ávila, C., and Cánovas, F.M., Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism, Plant Physiol., 2014, vol. 164, p. 92.

    Article  CAS  Google Scholar 

  10. Maeda, H. and Dudareva, N., The shikimate pathway and aromatic amino acid biosynthesis in plants, Annu. Rev. Plant Biol., 2012, vol. 63, p. 73.

    Article  CAS  Google Scholar 

  11. Koteyeva, N.K., Voznesenskaya, E.V., Berry, J.O., Chuong, S.D., Franceschi, V.R., and Edwards, G.E., Development of structural and biochemical characteristics of C4 photosynthesis in two types of Kranz anatomy in genus Suaeda (family Chenopodiaceae), J. Exp. Bot., 2011, vol. 62, p. 3197.

    Article  CAS  Google Scholar 

  12. Majeran, W., Friso, G., Ponnala, L., Connolly, B., Huang, M., Reidel, E., Zhang, C., Asakura, Y., Bhuiyan, N.H., Sun, Q., Turgeon, R., and Van Wijk, K.J., Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize, Plant Cell, 2010, vol. 22, p. 3509.

    Article  CAS  Google Scholar 

  13. Lea, P.J. and Miflin, B.J., Nitrogen assimilation and its relevance to crop improvement, in Nitrogen Metabolism in Plants in the Post-Genomic Era, Foyer, C. and Zhang, H., Eds., Chichester: Wiley-Blackwell, 2011, vol. 42, p. 1.

    Google Scholar 

  14. Castro-Rodríguez, V., García-Gutiérrez, A., Canales, J., Avila, C., Kirby, E.G., and Cánovas, F.M., The glutamine synthetase gene family in Populus,BMC Plant Biol., 2011, vol. 11, p. 119.

  15. Cantón, F.R., García-Gutiérrez, A., Crespillo, R., and Cánovas, F.M., High-level expression of Pinus sylvestris glutamine synthetase in Escherichia coli. Production of polyclonal antibodies against the recombinant protein and expression studies in pine seedlings, FEBS Lett., 1996, vol. 393, p. 205.

  16. Cánovas, F.M., Cantón, F.R., Gallardo, F., García-Gutiérrez, A., and de Vicente, A., Accumulation of glutamine synthetase during early development of maritime pine (Pinus pinaster) seedlings, Planta, 1991, vol. 185, p. 372.

  17. Pajuelo, P., Pajuelo, E., Orea, A., Romero, M., and Márquez, A.J., Influence of plant age and growth conditions on nitrate assimilation in roots of Lotus japonicus plants, Funct. Plant Biol., 2002, vol. 29, p. 485.

    Article  Google Scholar 

  18. García-Gutiérrez, A., Cantón, F.R., Gallardo, F., Sánchez-Jiménez, F., and Cánovas, F.M., Expression of ferredoxin-dependent glutamate synthase in dark-grown pine seedlings, Plant Mol. Biol., 1995, vol. 27, p. 115.

  19. El Omari, R., Rueda-López, M., Avila, C., Crespillo, R., Nhiri, M., and Cánovas, F.M., Ammonium tolerance and the regulation of two cytosolic glutamine synthetases in the roots of Sorghum,Funct. Plant Biol., 2010, vol. 37, p. 55.

    Article  CAS  Google Scholar 

  20. Arnon, D.I., Microelements in culture solution experiments with higher plants, Am. J. Bot., 1938, vol. 25, p. 322.

    Article  CAS  Google Scholar 

  21. Kanai, R. and Edwards, G.E., Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies, Plant Physiol., 1973, vol. 51, p. 1133.

    Article  CAS  Google Scholar 

  22. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Bioche-m., 1976, vol. 72, p. 248.

    Article  CAS  Google Scholar 

  23. Arnon, D.I., Copper enzyme in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris,Plant Physiol., 1949, vol. 24, p. 411.

    Article  Google Scholar 

  24. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, p. 68.

    Article  Google Scholar 

  25. Nelson, T., The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C4 leaves, J. Exp. Bot., 2011, vol. 62, p. 3039.

    Article  CAS  Google Scholar 

  26. Wang, P., Kelly, S., Fouracre, J.P., and Langdale, J.A., Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy, Plant J., 2013, vol. 75, p. 656.

    Article  CAS  Google Scholar 

  27. Majeran, W., Cai, Y., Sun, Q., and Van Wijk, K.J., Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics, Plant Cell, 2005, vol. 17, p. 3111.

    Article  CAS  Google Scholar 

  28. De la Torre, F., Moya-García, A., Suárez, M.F., Rodríguez-Caso, C., Cañas, R.A., Sánchez-Jiménez, F., and Cánovas, F.M., Molecular modelling and site-directed mutagenesis reveal essential residues for catalysis in a prokaryote-type aspartate aminotransferase, Plant Physiol., 2009, vol. 149, p. 1648.

    Article  CAS  Google Scholar 

  29. Graindorge, M., Giustini, C., Jacomin, A.C., Kraut, A., Curien, G., and Matringe, M., Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: the last homeless enzyme of aromatic amino acids biosynthesis, FEBS Lett., 2010, vol. 584, p. 4357.

    Article  CAS  Google Scholar 

  30. Azevedo, R.A., Lancien, M., and Lea, P.J., The aspartic acid metabolic pathway, an exciting and essential pathway in plants, Amino Acids, 2006, vol. 30, p. 14.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Francisco M. Cánovas Ramos for antibodies and his kind permission to conduct this study in the Laboratory of Molecular Biology and Plant Biotechnology of Malaga-Spain.

We also thank all the team of the Laboratory of Molecular Biology and Plant Biotechnology of Malaga-Spain for their valuable remarks concerning this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nhiri.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: AAT—aspartate aminotransferase; BSC—bundle-sheath cells; GOGAT—glutamate synthase; GS—glutamine synthetase; IDH—isocitrate dehydrogenase; MC—mesophyll cells; NiR—nitrite reductase; NR—nitrate reductase; PT-AAT—aspartate aminotransferase type prokaryotic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Omari, R., Ben Mrid, R., Bouargalne, Y. et al. Prokaryotic-Type Aspartate Aminotransferase in Sorghum Leaves: Localization, Distribution and Potential Role. Russ J Plant Physiol 67, 697–702 (2020). https://doi.org/10.1134/S1021443720040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720040068

Keywords:

Navigation