Log in

Orientational Crystallization of Ultrahigh Molecular Weight Polyethylene under Tension: Effect of Thermal Fixation

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

A series of samples with different morphology is obtained by the monolithization of an ultrahigh molecular weight polyethylene nascent powder at different temperatures. The elastoplastic properties of films pressed at 135°C that have the greatest ability to achieve high orientational elongations are studied in detail. It is shown that the deformation of ultrahigh molecular weight polyethylene crystals at elevated temperatures contains a noticeable elastic component and, at the time of unloading of the stretched “spatulas,” their elastic contraction occurs; as a result, the residual elongation and disorientation of chains decrease. Relaxation processes can be reduced if the deformable sample with fixed ends is cooled rapidly. Orientational crystallization during thermal fixation promotes an increase in the degree of crystallinity and the Hermans orientation factor and, accordingly, facilitates improvement in the mechanical properties of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. V. E. Gul’ and V. N. Kuleznev, Structure and Mechanical Properties of Polymers (Vysshaya shkola, Moscow, 1972) [in Russian].

  2. G. M. Bartenev, Strength and Failure Mechanisms in Polymers (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  3. N. S. Enikolopian, E. L. Akopian, N. M. Styrikovitch, A. S. Ketchekian, and V. C. Nikolskii, J. Polym. Sci., Polym. Phys. Ed. 25, 1203 (1987).

    Article  Google Scholar 

  4. E. M. Antipov, S. D. Artamonova, I. V. Samusenko, and Z. Pelzbauer, J. Macromol. Sci., Part B: Phys. 30, 245 (1991).

    Article  Google Scholar 

  5. I. N. Andreeva, E. V. Veselovskaya, E. I. Nalivaiko, A. D. Pechenkin, V. I. Bukhgalter, and A. V. Polyakov, Ultra-High-Molecular-Weight Polyethylene (Khimiya, Leningrad, 1982) [in Russian].

    Google Scholar 

  6. P. M. Pakhomov, V. P. Galitsyn, S. D. Khizhnyak, and A. E. Chmel’, High-Strength and High-Modulus Polymer Fibers (Tverskoi Gos. Univ., Tver, 2012) [in Russian].

    Google Scholar 

  7. A. N. Ozerin, S. S. Ivanchev, S. N. Chvalun, V. A. Aulov, N. I. Ivancheva, and N. F. Bakeev, Polym. Sci., Ser. A 54, 950 (2012).

    Article  CAS  Google Scholar 

  8. S. S. Ivanchev, E. I. Ruppel’, and A. N. Ozerin, Dokl. Ross. Akad. Nauk 468, 538 (2016).

    Google Scholar 

  9. L. P. Myasnikova, V. N. Varyukhin, V. A. Marikhin, V. F. Drobot’ko, N. E. Pis’menova, S. A. Terekhov, Fiz. Tekh. Vys. Davlenii 27, 7 (2017).

    CAS  Google Scholar 

  10. P. H. Hermans and A. Weidinger, Makromolek. Chem. 44, 24 (1961).

    Article  Google Scholar 

  11. V. E. Sitnikova, S. D. Khizhnyak, I. S. Kuryndin, G. K. El’yashevich, and P. M. Pakhomov, Vest. TvGU, Ser. Khim., No. 16, 106 (2013).

  12. M. V. Baidakova, P. V. Dorovatovskii, Ya. V. Zubavichus, E. M. Ivan’kova, S. S. Ivanchev, V. A. Marikhin, L. P. Myasnikova, and M. A. Yagovkina, Phys. Solid State 60, 1897 (2018).

    Article  CAS  Google Scholar 

  13. V. A. Aulov, M. A. Shcherbina, S. N. Chvalun, S. V. Makarov, I. O. Kuchkina, A. A. Pantyukhin, N. F. Bakeev, and Yu. S. Pavlov, Polym. Sci., Ser. A 46, 620 (2004).

    Google Scholar 

  14. V. A. Marikhin and L. P. Myasnikova, Supramolecular Structure of Polymers (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  15. E. F. Oleinik, Polym. Sci., Ser. C 45, 17 (2003).

    Google Scholar 

  16. G. M. Bartenev and Yu. V. Zelenev, Course of Polymer Physics (Khimiya, Leningrad, 1976) [in Russian].

    Google Scholar 

  17. L. R. G. Treloar, Introduction to Polymer Science (Wikeham Publ. LTD, London, 1970).

    Google Scholar 

  18. K. Hong and G. Strobl, Polym. Sci., Ser. A 50, 483 (2008).

    Article  Google Scholar 

  19. B. Hartmann, G. F. Lee, and W. Wong, Polym, Eng, Sci. 27, 823 (1987).

    Article  CAS  Google Scholar 

  20. O. K. Garishin, V. A. Gerasin, and M. A. Guseva, Polym. Sci., Ser. A 53, 1187 (2011).

    Article  CAS  Google Scholar 

  21. A. J. Peacock and L. Mandelkern, J. Polym. Sci., Polym. Phys. Ed. 28, 1917 (1990).

    Article  CAS  Google Scholar 

  22. M. A. Kennedy, A. J. Peacock, and L. Mandelkern, Macromolecules 27, 5297 (1994).

    Article  CAS  Google Scholar 

  23. E. S. Tsobkallo, V. E. Korsukov, A. M. Stalevich, and A. V. Savitskii, Vysokomol. Soedin., Ser. A 22, 1100 (1980).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.P. Galitsyn for kindly providing samples of the ultrahigh molecular weight PE reactor powder.

Funding

This work was carried out within the framework of the State Assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (topic 45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Guseva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasin, V.A., Shklyaruk, B.F., Guseva, M.A. et al. Orientational Crystallization of Ultrahigh Molecular Weight Polyethylene under Tension: Effect of Thermal Fixation. Polym. Sci. Ser. A 63, 209–219 (2021). https://doi.org/10.1134/S0965545X21030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21030056

Navigation