Log in

Effect of thermal-oxidative aging on the microstructure of thermoplastic poly(ether-urethane)

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Thermodynamic incompatibility between the hard and soft segments in thermoplastic polyurethanes (TPUs) leads to a two-phase microstructure, which is usually demonstrated by the characterizations of fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The effect of thermal-oxidative aging durations (up to 300 days) and temperatures (40, 50, 55, 70°C) on the microstructure of TPUs were investigated by FTIR, DSC, specific surface energy and dynamic mechanical analysis (DMA) in this work. The TPUs were synthesized by 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol as hard segments and poly(tetramethylene glycol) as soft segments. The result demonstrates that the degree of the phase separation value in virgin TPUs is about 0.332. The specific surface energies of hard and soft segments are 56.9 and 35.7 mJ/cm2, respectively. Furthermore, the degree of microphase separation and dam** property achieved by the aid of the Gauss method and DMA, respectively, of the TPUs show an obvious decrease during the durations. Moreover, the change of glass transition temperature T g of the TPUs was also investigated by the DMA. The result indicates that the T g of the TPUs is almost unchanged with the aging temperatures and durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. F. Zhu, J. P. **ong, Y. M. Tang, and Y. Zuo, Prog. Org. Coat. 69, 7 (2010).

    Article  CAS  Google Scholar 

  2. Z. Czech and R. Pełech, Prog. Org. Coat. 67, 72 (2010).

    Article  CAS  Google Scholar 

  3. M. M. El-Molla, Dyes Pigments 74, 371 (2007).

    Article  CAS  Google Scholar 

  4. A. S. Nasar, M. Jikei, and M. Kakimoto, Eur. Polym. J. 39, 1201 (2003).

    Article  CAS  Google Scholar 

  5. F. Yeh, B. S. Hsiao, B. B. Sauer, S. Michel, and H. W. Siesler, Macromolecules 36, 1940 (2003).

    Article  CAS  Google Scholar 

  6. V. B. Veronese, R. K. Menger, M. M. D. C. Forte, and C. L. Petzhold, J. Appl. Polym. Sci. 120, 530 (2011).

    Article  CAS  Google Scholar 

  7. M. C. Silva, J. A. Takahashi, D. Chaussy, M. N. Belgacem, and G. G. Silva, J. Appl. Polym. Sci 117, 3665 (2010).

    CAS  Google Scholar 

  8. A. Mahomed, D. W. L. Hukins, S. N. Kukureka, and D. E T. Shepherd, Mater. Sci. Eng. C 30, 1298 (2010).

    Article  CAS  Google Scholar 

  9. K. P. Somani, S. S. Kansara, N. K. Patel, and A. K. Rakshit, Int. J. Adhes. 23, 269 (2003).

    Article  CAS  Google Scholar 

  10. T. Temtchenko, S. Turri, S. Novelli, and M. Delucchi, Prog. Org. Coat. 43, 75 (2001).

    Article  CAS  Google Scholar 

  11. A. C. Aznar, O. R. Pardini, and J. I. Amalvy, Prog. Org. Coat. 55, 43 (2006).

    Article  CAS  Google Scholar 

  12. B. S. Chiou and P. E. Shoen, J. Appl. Polym. Sci. 83, 212 (2002).

    Article  CAS  Google Scholar 

  13. J. C. Wang, Y. H. Chen, Y. Tang, and M. M. Xu, High Perform. Polym. 21, 155 (2009).

    Article  Google Scholar 

  14. L. Leiblert, Macromolecules 13, 1602 (1980).

    Article  Google Scholar 

  15. D. Dieterich, E. Grigat, W. Hahn, H. Hespe, and H. G. Schmelzer, in Polyurethane Handbook (Hanser, Munich, 1993).

    Google Scholar 

  16. J. Báez, D. Ramírez, J. L. Valentín, and A. Marcos-Fernández, Macromolecules 45, 6966 (2012).

    Article  Google Scholar 

  17. R. S. Maxwell, D. Chambers, B. Balazs, R. Cohenour, and W. Sung, Polym. Degrad. Stab. 82, 193 (2003).

    Article  CAS  Google Scholar 

  18. C. S. Schollenberger and F. D. Stewart, J. Elast. Plast. 4, 294 (1972).

    Article  CAS  Google Scholar 

  19. R. P. Singh, S. T. Namrata, and S. V. Badraiyah, Polym. Degrad. Stab. 73, 443 (2001).

    Article  CAS  Google Scholar 

  20. R. Chandra,. P. Thapliyal, and R. K. Soni, Polym. Degrad. Stab. 39, 93 (1993).

    Article  CAS  Google Scholar 

  21. A. Boubakri, N. Guermazi, K. Elleuch, and H. F. Ayedi, Mater. Sci. Eng. A 527, 1649 (2010).

    Article  Google Scholar 

  22. R. Hernandez, J. Weksler, A. Padsalgikar, and J. Runt, Macromolecules 40, 5441 (2007).

    Article  CAS  Google Scholar 

  23. Y. W. Tang, R. S. Labow, and J. P. Santerre, J. Biomed. Mater. Res. 57, 597 (2001).

    Article  CAS  Google Scholar 

  24. R. Hernandez, J. Weksler, A. Padsalgikar, T. Choi, E. Angelo, J. S. Lin, L. C. Xu, C. A. Siedlecki, and J. Runt, Macromolecules 41, 9767 (2008).

    Article  CAS  Google Scholar 

  25. J. M. Widmaier and G. C. Meyer, Polymer 19, 398 (1978).

    Article  Google Scholar 

  26. S. L. Huanga, M. S. Chaoa, R. C. Ruaanb, and J. Y. Laib, Eur. Polym. J. 36, 285 (2000).

    Article  Google Scholar 

  27. A. K. Barick and D. K. Tripathy, J. Appl. Polym. Sci. 117, 639 (2010).

    Article  CAS  Google Scholar 

  28. C. S. P. Sung and N. S. Schneider, Macromolecules 8, 68 (1975).

    Article  CAS  Google Scholar 

  29. J. F. Larché, P. O. Bussière, P. Wong-Wah-Chung, and J. L. Gardette, Eur. Polym. J. 48, 172 (2012).

    Article  Google Scholar 

  30. K. W. **ang, X. A. Wang, G. S. Huang, J. Zheng, J. Y. Huang, and G. X. Li, Polym. Degrad. Stab. 97, 1704 (2012).

    Article  CAS  Google Scholar 

  31. W. A. Zisman, Adv. Chem. 43, 1 (1969).

    Article  Google Scholar 

  32. F. C. Wang, M. Feve, T. M. Lam, and J. P. Pascault, J. Polym. Sci., Part. B: Polym. Phys. 32, 1315 (1994).

    Article  CAS  Google Scholar 

  33. H. S. Lee, Y. K. Wang, and S. L. Hsu, Macromolecules 20, 2089 (1987).

    Article  CAS  Google Scholar 

  34. C. M. Brunette, S. L. Hsu, and W. J. MacKnight, Macromolecules 15, 71 (1982).

    Article  CAS  Google Scholar 

  35. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).

    Article  CAS  Google Scholar 

  36. P. E. Luner and E. Oh, Colloids Surf. A 181, 31 (2001).

    Article  CAS  Google Scholar 

  37. M. H. V. C. Adão, B. J. V. Saramago, and A. C. Fernandes, J. Colloid Interface Sci. 217, 94 (1999).

    Article  Google Scholar 

  38. S. Sugden, J. Chem. Soc. 126, 1177 (1924).

    Article  Google Scholar 

  39. J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, New York, 2002).

    Book  Google Scholar 

  40. Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1975).

    Google Scholar 

  41. H. X. **ao, S. Yang, J. E. Kresta, K. C. Frisch, and D. P. Higley, J. Elast. Plast. 26, 237 (1994).

    Article  CAS  Google Scholar 

  42. R. N. Jana and H. Bhunia, High Perform. Polym. 22, 3 (2010).

    Article  CAS  Google Scholar 

  43. D. Sarkar and S. T. Lopina, Polym. Degrad. Stab. 92, 1994 (2007).

    Article  CAS  Google Scholar 

  44. D. J. Nagle, M. Celina, and L. Rintoul, Polym. Degrad. Stab. 92, 1446 (2007).

    Article  CAS  Google Scholar 

  45. D. Rosu, L. Rosu, and C. N. Cascaval, Polym. Degrad. Stab. 94, 591 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyu He.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Ai, Q., Yang, R. et al. Effect of thermal-oxidative aging on the microstructure of thermoplastic poly(ether-urethane). Polym. Sci. Ser. A 56, 441–449 (2014). https://doi.org/10.1134/S0965545X14040142

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14040142

Keywords

Navigation