Log in

Diffusion in Nanoporous Materials: from Paradigm Shift by Zhdanov Zeolites Till Recent Insight

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Our present knowledge of the translational mobility of guest molecules in zeolites would be unthinkable without the involvement of the giant zeolite crystallites synthesized by Prof. Sergey Petrovich Zhdanov in Leningrad. The present contribution narrates how the availability of his “tailor-made” zeolite samples, jointly with the potentials of the pulsed field gradient nuclear magnetic resonance (PFG NMR) allowed, for the very first time, the direct measurement of molecular displacements within the interior of zeolite crystals and, thus, of zeolitic guest diffusion. Starting with an introduction into the potentials of PFG NMR diffusion measurements quite in general, the paper reports about the hidden pitfalls, which by recording molecular uptake and release in conventional diffusion measurements may lead to substantial inconsistencies, and about their elucidation via PFG NMR owing to Zhdanov’s giant zeolites. A survey of the main achievements of diffusion studies by PFG NMR with Zhdanov’s zeolites is given. It ranges from knowledge about the different patterns of the concentration dependencies of diffusion via diffusion in multicomponent systems including chemical reactions up to the exploration of hierarchies of diffusion resistances. The review is concluded by highlights of most recent diffusion studies including “nanoscopic” diffusion measurement via deuterium NMR and the message of purposefully designed conversion studies on mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. R. M. Barrer, J. Chem. Soc., 2158 (1948).

  2. T. B. Reed and D. W. Breck, J. Am. Chem. Soc. 78, 5972 (1956).

    Article  CAS  Google Scholar 

  3. R. M. Milton, Zeolite Synthesis, Ed. by M. L. Occelli (Americal Chemical Society, Washington, DC, 1969), p. 1.

    Google Scholar 

  4. R. M. Barrer and B. E. F. Fender, J. Phys. Chem. Solids 21, 12 (1961).

    Article  CAS  Google Scholar 

  5. W. W. Brandt and W. Rudloff, J. Phys. Chem. Solids 26, 741 (1965).

    Article  CAS  Google Scholar 

  6. D. M. Ruthven, Can. J. Chem. 52, 3523 (1974).

    Article  CAS  Google Scholar 

  7. D. M. Ruthven and I. H. Doetsch, J. Chem. Soc. Faraday Trans. I 72, 1043 (1976).

    Article  CAS  Google Scholar 

  8. E. O. Stejskal and J. E. Tanner, J. Chem. Phys. 42, 288 (1965).

    Article  CAS  Google Scholar 

  9. J. E. Tanner and E. O. Stejskal, J. Chem. Phys. 49, 1768 (1968).

    Article  CAS  Google Scholar 

  10. C. Parravano, J. D. Baldeschwieler, and M. Boudart, Science 155, 1535 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. S. P. Zhdanov, S. S. Khvostchov, and N. N. Feoktistova, Synthetic Zeolites (Gordon and Breach, New York, 1990).

    Google Scholar 

  12. J. Kärger, Z. Phys. Chem. (Leipzig) 248, 27 (1971).

    Google Scholar 

  13. J. Kärger, H. Pfeifer, S. P. Zhdanov, and W. Schirmer, Zh. Fiz. Khim. 46, 2102 (1972).

    Google Scholar 

  14. C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1980).

    Google Scholar 

  15. R. Kimmich, NMR Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997).

    Google Scholar 

  16. B. Blümich, Essential NMR (Springer, Berlin, 2005).

    Google Scholar 

  17. R. Valiullin, Diffusion NMR of Confined Systems (Royal Society of Chemistry, Cambridge, 2016).

    Book  Google Scholar 

  18. J. Kärger and W. Heink, J. Magn. Reson. 51, 1 (1983).

    Google Scholar 

  19. P. T. Callaghan, A. Coy. D. MacGowan, et al., Nature 351, 467 (1991).

    Article  CAS  Google Scholar 

  20. W. S. Price, NMR Studies of Translational Motion (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  21. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, 1975).

    Google Scholar 

  22. J. Kärger, D. M. Ruthven, and D. N. Theodorou, Diffusion in Nanoporous Materials (Wiley‒VCH, Weinheim, 2012).

    Book  Google Scholar 

  23. Leipzig, Einstein, Diffusion, Ed. by J. Kärger, 3rd Ed. (Leipziger Universitätsverlag, Leipzig, 2007).

    Google Scholar 

  24. H. Pfeifer, Encyclopedia of Nuclear Magnetic Resonance, Ed. by D. M. Grant and R. K. Harris (Wiley, Chichester, 1996), p. 530.

    Google Scholar 

  25. H. Pfeifer, Magn. Reson. Chem. 37, 154 (1999).

    Article  Google Scholar 

  26. J. Kärger, Diffusion Fundamentals 14 (1) 1 (2010).

    Google Scholar 

  27. A. Lösche, Kerninduktion (Deutscher Verlag der Wissenschaften, Berlin, 1957).

    Google Scholar 

  28. H. Pfeifer, Elektronisches Rauschen (B. G. Teubner, Leipzig, 1959).

    Google Scholar 

  29. H. Pfeifer, NMR Basic Principles and Progress, Ed. by P. Diehl, E. Fluck, and R. Kosfeld, Springer, New York, 1972), Vol. 7, p. 53.

    Google Scholar 

  30. H. Pfeifer, Phys. Rep. 26, 293 (1976).

    Article  Google Scholar 

  31. M. M. Dubinin, R. S. Vartapetian, A. M. Voloscuk, et al., Carbon 26, 515 (1988).

    Article  CAS  Google Scholar 

  32. J. Kärger, H. Pfeifer, R. S. Vartapetian, and A. M. Vo-loshchuk, Pure Appl. Chem. 61, 1875 (1989).

    Article  Google Scholar 

  33. J. Kärger, M. Kocirik, and A. Zikanova, J. Colloid Interface Sci. 84, 240 (1981).

    Article  Google Scholar 

  34. J. Kärger, M. Bulow, B. R. Millward, and J. M. Tho-mas, Zeolites 6, 146 (1986).

    Article  Google Scholar 

  35. J. Kärger, Surf. Sci. 36, 797 (1973).

    Article  Google Scholar 

  36. J. Karger, Langmuir 4, 1289 (1988).

    Article  Google Scholar 

  37. J. Kärger, H. Pfeifer, J. Caro, et al., Appl. Catal. 24, 187 (1986).

    Article  Google Scholar 

  38. J. Kärger and D. M. Ruthven, J. Chem. Soc., Faraday Trans. 1 77, 1485 (1981).

    Article  Google Scholar 

  39. J. Kärger and D. M. Ruthven, Zeolites. 9, 267 (1989).

    Article  Google Scholar 

  40. J. Kärger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992).

    Google Scholar 

  41. H. Jobic, M. Bee, J. Caro, M. Bülow, J. Kärger, J. Chem. Soc., Faraday Trans. 85, 4201 (1989).

    Article  CAS  Google Scholar 

  42. J. Kärger and H. Jobic, Colloids Surf. 58, 203 (1991).

    Article  Google Scholar 

  43. S. P. Zhdanov, J. Kärger, and E. V. Koromaldi, Dokl. Akad. Nauk SSSR 204, 622 (1972).

    CAS  Google Scholar 

  44. J. Karger and H. Kessler, Microporous Mesoporous Mater. 55, 5 (2002).

    Article  Google Scholar 

  45. A. Corma, F. Fajula, J. Kärger, and D. Olson, Microporous Mesoporous Mater. 90, 1 (2006).

    Article  CAS  Google Scholar 

  46. C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, 6th Ed. (Elsevier, Amsterdam, 2007).

    Google Scholar 

  47. J. Kärger, H. Pfeifer, E. Riedel, and H. Winkler, J. Colloid Interface Sci. 44, 187 (1973).

    Article  Google Scholar 

  48. F. D’Orazio, S. Bhattacharja, W. P. Halperin, and R. Gerhardt, Phys. Rev. Lett. 63, 43 (1989).

    Article  PubMed  Google Scholar 

  49. J. Kärger and W. Heink, Exp. Tech. Phys. 19, 453 (1971).

    Google Scholar 

  50. J. Kärger, S. P. Zhdanov, and A. Walter, Z. Phys. Chem. (Leipzig) 256, 319 (1975).

    Google Scholar 

  51. J. Kärger, H. Pfeifer, M. Rauscher, et al., Z. Phys. Chem (Leipzig) 262, 567 (1981).

    Google Scholar 

  52. A. Germanus, J. Kärger, H. Pfeifer, et al., Zeolites 5, 91 (1985).

    Article  CAS  Google Scholar 

  53. D. M. Ruthven and K. F. Loughlin, Trans. Faraday Soc. 67, 1661 (1971).

    Article  CAS  Google Scholar 

  54. D. M. Ruthven and K. F. Loughlin, J. Chem. Soc., Faraday Trans. 1 68, 696 (1972).

    Article  CAS  Google Scholar 

  55. D. R. Garg and D. M. Ruthven, Chem. Eng. Sci. 27, 417 (1972).

    Article  CAS  Google Scholar 

  56. D. M. Ruthven and R. I. Derrah, Can. J. Chem. Eng. 50, 743 (1972).

    Article  CAS  Google Scholar 

  57. I. H. Doetsch, D. M. Ruthven, and K. F. Loughlin, Can. J. Chem. 52, 2717 (1974).

    Article  CAS  Google Scholar 

  58. I. Prigogine, The End of Certainty (Free Press, New York, 1997).

    Google Scholar 

  59. D. N. Theodorou, R. Q. Snurr, and A. T. Bell, Comprehensive Supramolecular Chemistry, Ed. by G. Alberti and T. Bein (Pergamon, Oxford, 1996), Vol. 7, p. 507.

    Google Scholar 

  60. R. Krishna and J. M. Van Baten, Microporous Mesoporous Mater. 109, 91 (2008).

    Article  CAS  Google Scholar 

  61. R. Krishna and J. M. Van Baten, Phys. Chem. Chem. Phys. 15, 7994 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. J. Kärger and D. M. Ruthven, New J. Chem. 40, 4027 (2016).

    Article  CAS  Google Scholar 

  63. C. Chmelik and J. Kärger, Microporous Mesoporous Mater. 225, 128 (2016).

    Article  CAS  Google Scholar 

  64. J. Kärger and J. Caro, J. Chem. Soc., Faraday Trans. 1 73, 1363 (1977).

    Article  Google Scholar 

  65. J. Kärger, M. Bulow, and P. Lorenz, J. Colloid Interface Sci. 65, 181 (1978).

    Article  Google Scholar 

  66. J. Kärger, AIChE J. 28, 417 (1982).

    Article  Google Scholar 

  67. D. M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984).

    Google Scholar 

  68. Liquid Scintillation Counting, Ed. by A. Dyer (Heyden, London, 1971).

    Google Scholar 

  69. M. Goddard and D. M. Ruthven, Zeolites 6, 445 (1986).

    Article  Google Scholar 

  70. A. Dyer and H. Faghihian, Microporous Mesoporous Mater. 21, 27 (1998).

    Article  CAS  Google Scholar 

  71. M. Kocirik and A. Zikanova, Ind. Eng. Chem. Fundam. 13, 347 (1974).

    Article  CAS  Google Scholar 

  72. M. M. Dubinin, I. T. Erashko, O. Kadlec, et al., Carbon 13, 193 (1975).

    Article  CAS  Google Scholar 

  73. R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic, London, 1978).

    Google Scholar 

  74. J. Kärger, W. Heink, H. Pfeifer, et al., Zeolites 2, 275 (1982).

    Article  Google Scholar 

  75. J. Kärger, H. Pfeifer, R. Richter, et al., AIChE J. 34, 1185 (1988).

    Article  Google Scholar 

  76. D. M. Ruthven, Microporous Mesoporous Mater. 162, 69 (2012).

    Article  CAS  Google Scholar 

  77. J. Kärger, T. Binder, C. Chmelik, et al., Nat. Mater. 13, 333 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. C. Chmelik, H. Bux, J. Caro, et al., Phys. Rev. Lett. 104, 85 902 (2010).

    Article  CAS  Google Scholar 

  79. D. Tzoulaki, L. Heinke, W. Schmidt, et al., Angew. Chem., Int. Ed. Engl. 47, 3954 (2008).

    Article  CAS  Google Scholar 

  80. D. Tzoulaki, L. Heinke, M. Castro, et al., J. Am. Chem. Soc. 132, 11 665 (2010).

    Article  CAS  Google Scholar 

  81. J. C. S. Remi, A. Lauerer, C. Chmelik, et al., Nat. Mater 15, 401 (2015).

    Article  CAS  Google Scholar 

  82. M. Bulow, J. Kärger, M. Kocirik, and A. M. Voloshchuk, Z. Chem. 21, 175 (1981).

  83. J. Kärger, M. Bülow, V. I. Ulin, et al., J. Chem. Technol. Biotechnol. 32, 376 (1982).

    Article  Google Scholar 

  84. J. Kärger, J. Lenzner, H. Pfeifer, et al., J. Am. Ceram. Soc. 66, 69 (1983).

    Article  Google Scholar 

  85. C. Forste, W. Heink, J. Kärger, et al., Appl. Spectrosc. 9, 299 (1989).

    Google Scholar 

  86. W. Lutz, M. Bülow, N. N. Feoktistova, et al., Cryst. Res. Technol. 24, 161 (1989).

    Article  CAS  Google Scholar 

  87. M. Bülow, P. Struve, W. Mietk, and M. Kocirik, J. Chem. Soc., Faraday Trans. 1 80, 813 (1984).

    Article  Google Scholar 

  88. M. Bülow, P. Struve, and L. V. C. Rees, Zeolites. 5, 113 (1985).

    Article  Google Scholar 

  89. J. Caro, M. Bülow, J. Richter-Mendau, et al., J. Chem. Soc., Faraday Trans. 1 83, 1843 (1987).

    Article  CAS  Google Scholar 

  90. N. Den-Begin, L. V. C. Rees, J. Caro, and M. Bülow, Zeolites 9, 287 (1989).

    Article  Google Scholar 

  91. S. Brandani, D. M. Ruthven, and J. Kärger, Zeolites 15, 494 (1995).

    Article  CAS  Google Scholar 

  92. H. Jobic, J. Kärger, C. Krause, et al., Adsorption 11, 403 (2005).

    Article  Google Scholar 

  93. C. Chmelik, D. Enke, P. Galvosas, et al., Chem. Phys. Chem. 12, 1130 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. F. Janowski and D. Enke, Handbook of Porous Solids, Ed. by F. Schüth, K. S. W. Sing, and J. Weitkamp. (Wiley‒VCH, Weinheim, 2002), p. 1432.

    Google Scholar 

  95. D. Enke, F. Janowski, and W. Schwieger, Microporous Mesoporous Mater. 60, 19 (2003).

    Article  CAS  Google Scholar 

  96. D. Stoltenberg, A. Seidel-Morgenstern, and D. Enke, Chem. Ing. Tech. 82, 829 (2010).

    Article  CAS  Google Scholar 

  97. G. D. Birkhoff, Proc. Nat. Acad. Sci. U.S.A. 17, 656 (1931).

    Article  CAS  Google Scholar 

  98. A. Lubelski, I. Sokolov, and J. Klafter, Phys. Rev. Lett. 100, 250602 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. J. Kirstein, B. Platschek, C. Jung, et al., Nat. Mater. 6, 303 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. A. Zürner, J. Kirstein, M. Doblingernet al., Nature 450, 705 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Single Particle Tracking and Single Molecule Energy Transfer, Ed. by C. Bräuchle, D. C. Lamb, and J. Michaelis (Wiley‒VCH, Weinheim, 2010).

    Google Scholar 

  102. F. Feil, S. Naumov, J. Michaelis, et al., Angew. Chem., Int. Ed. Engl. 51, 1152 (2012).

    Article  CAS  Google Scholar 

  103. J. Kärger and H. Pfeifer, Zeolites 7, 90 (1987).

    Article  Google Scholar 

  104. F. J. Keil, R. Krishna, and M. O. Coppens, Rev. Chem. Eng. 16, 71 (2000).

    Article  CAS  Google Scholar 

  105. J. Caro, M. Bülow, W. Schirmer, et al., J. Chem. Soc., Faraday Trans. 1 81, 2541 (1985).

    Article  CAS  Google Scholar 

  106. W. Heink, J. Kärger, S. Ernst, and J. Weitkamp, Zeolites 14, 320 (1994).

    Article  CAS  Google Scholar 

  107. C. J. J. Den Ouden, B. Smit, A. F. H. Wielers, et al., Mol. Simul. 4, 121 (1989).

    Article  Google Scholar 

  108. R. L. June, A. T. Bell, and D. N. Theodorou, J. Phys. Chem. 94, 8232 (1990).

    Article  CAS  Google Scholar 

  109. S. D. Pickett, A. K. Nowak, J. M. Thomas, et al., J. Phys. Chem. 94, 1233 (1990).

    Article  CAS  Google Scholar 

  110. P. Demontis, E. S. Fois, G. Suffritti, and S. Quartieri, J. Phys. Chem. 94, 4329 (1990).

    Article  CAS  Google Scholar 

  111. R. Krishna, D. Paschek, and R. Baur, Microporous Mesoporous Mater. 76, 233 (2004).

    Article  CAS  Google Scholar 

  112. G. K. Papadopoulos, H. Jobic, and D. N. Theodorou, J. Phys. Chem. B 108, 12 748 (2004).

    Article  CAS  Google Scholar 

  113. M. Sant, G. K. Papadopoulos, and D. N. Theodorou, J. Chem. Phys. 132, 134 108 (2010).

    Article  CAS  Google Scholar 

  114. I. Déroche, S. Rives, T. Trung, et al., J. Phys. Chem. C 115, 13 868 (2011).

    Article  CAS  Google Scholar 

  115. Q. Yang, H. Jobic, F. Salles, et al., Chemistry 17, 8882 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. S. Chempath, R. Krishna, and R. Q. Snurr, J. Phys. Chem. B 108, 13 481 (2004).

    Article  CAS  Google Scholar 

  117. D. C. Ford, D. Dubbeldam, R. Q. Snurr, et al., J. Phys. Chem. Lett. 3, 930 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. E. Pantatosaki, H. Jobic, D. I. Kolokolov, et al., J. Chem. Phys. 138, 34706 (2013).

    Article  CAS  Google Scholar 

  119. N. A. Ramsahye, J. Gao, H. Jobic, et al., J. Phys. Chem. C 118, 27 470 (2014).

    Article  CAS  Google Scholar 

  120. U. Hong, J. Kärger, H. Pfeifer, et al., Z. Phys. Chem. 173, 225 (1991).

    Article  CAS  Google Scholar 

  121. S. Fritzsche, R. Haberlandt, J. Kärger, et al., Chem. Phys. Lett. 198, 283 (1992).

    Article  CAS  Google Scholar 

  122. S. Fritzsche, R. Haberlandt, J. Kärger, et al., Chem. Phys. 174, 229 (1993).

    Article  CAS  Google Scholar 

  123. S. Gladstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941).

    Google Scholar 

  124. D. M. Ruthven and R. I. Derrah, J. Chem. Soc., Faraday Trans. 1 68, 2332 (1972).

    Article  CAS  Google Scholar 

  125. J. Kärger, Surf. Sci. 57, 749 (1976).

    Article  Google Scholar 

  126. J. Kärger, M. Bülow, and R. Haberlandt, J. Colloid Interface Sci. 60, 386 (1977).

    Article  Google Scholar 

  127. C. Chmelik, Microporous Mesoporous Mater. 216, 138 (2015).

    Article  CAS  Google Scholar 

  128. K. S. Park, Z. Ni, A. P. Cote, et al., Proc. Natl. Acad. Sci. U.S.A. 103, 10 186 (2006).

    Article  CAS  Google Scholar 

  129. P. Stilbs, J. Colloid Interface Sci. 87, 385 (1982).

    Article  CAS  Google Scholar 

  130. P. Stilbs, Prog. Nucl. Magn. Reson. Spectrosc. 19, 1 (1987).

    Article  CAS  Google Scholar 

  131. J. Kärger, H. Pfeifer, and W. Heink, Adv. Magn. Reson. 12, 2 (1988).

    Google Scholar 

  132. C. S. Johnson, Jr., J. Magn. Reson., Ser. A 102, 214 (1993).

    CAS  Google Scholar 

  133. E. Pettersson, D. Topgaard, P. Stilbs, and O. Soderman, Langmuir 20, 1138 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. J. Kärger, H. Pfeifer, F. Stallmach, et al., Zeolites 13, 50 (1993).

    Article  Google Scholar 

  135. R. Q. Snurr and J. Kärger, J. Phys. Chem. B 101, 6469 (1997).

    Article  CAS  Google Scholar 

  136. S. Jost, N. K. Bar, S. Fritzsche, et al., J. Phys. Chem. B 102, 6375 (1998).

    Article  CAS  Google Scholar 

  137. U. Hong, J. Kärger, B. Hunger, et al., J. Catal. 137, 243 (1992).

    Article  CAS  Google Scholar 

  138. P. Rousselot-Pailley, D. Maux, J. M. Wieruszeski, et al., Tetrahedron 56, 5163 (2000).

    Article  CAS  Google Scholar 

  139. H. Schröder, J. Comb. Chem. 6, 741 (2003).

    Google Scholar 

  140. A. Pampel, M. Fernandez, D. Freude, and J. Kärger, Chem. Phys. Lett. 407, 53 (2005).

    Article  CAS  Google Scholar 

  141. J. Kärger, D. Freude, and J. Haase, Processes 6, 147 (2018).

    Article  Google Scholar 

  142. J. Kärger and S. Vasenkov, Microporous Mesoporous Mater. 85, 195 (2005).

    Article  CAS  Google Scholar 

  143. T. Titze, C. Chmelik, J. Kullmann, et al., Angew. Chem., Int. Ed. Engl. 54, 5060 (2015).

    Article  CAS  Google Scholar 

  144. C. Chmelik, M. Liebau, M. Al-Naji, et al., ChemCatChem 10, 5602 (2018).

  145. H. B. Schwarz, S. Ernst, J. Kärger, et al., J. Catal. 167, 248 (1997).

    Article  CAS  Google Scholar 

  146. E. W. Thiele, Ing. Eng. Chem. 31, 916 (1939).

    Article  CAS  Google Scholar 

  147. C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis (M.I T. Press, Cambridge, 1970).

    Google Scholar 

  148. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, 2nd Ed. (Wiley‒VCH, Weinheim, 2014).

    Google Scholar 

  149. S. Vasenkov, W. Bohlmann, P. Galvosas, et al., J. Phys. Chem. B 105, 5922 (2001).

    Article  CAS  Google Scholar 

  150. S. Vasenkov and J. Kärger, Microporous Mesoporous Mater. 55, 139 (2002).

    Article  CAS  Google Scholar 

  151. E. Stavitski, M. R. Drury, D. A. M. De Winter, et al., Angew. Chem., Int. Ed. Engl. 47, 5637 (2008).

    Article  CAS  Google Scholar 

  152. M. B. J. Roeffaers, R. Ameloot, M. Baruah, et al., J. Am. Chem. Soc. 130, 5763 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. M. B. J. Roeffaers, R. Ameloot, A. J. Bons, et al., J. Am. Chem. Soc. 130, 13 516 (2008).

    Article  CAS  Google Scholar 

  154. L. Karwacki, M. H. F. Kox, D. A. M. de Winter, et al., Nat. Mater. 8, 959 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Z. Ristanovic, M. M. Kerssens, A. V. Kubarev, et al., Angew. Chem., Int. Ed. Engl. 54, 1836 (2015).

    Article  CAS  Google Scholar 

  156. Y. Liu, F. Meirer, C. M. Krest, et al., Nat. Commun. 7, 12634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. S. Beckert, F. Stallmach, H. Toufar, et al., J. Phys. Chem. C 117, 24866 (2013).

    Article  CAS  Google Scholar 

  158. H. Jobic, Recent Advances in Gas Separation by Microporous Ceramic Membranes, Ed. by N. K. Kapellopoulos (Elsevier, Amsterdam, 2000), p. 109.

    Google Scholar 

  159. H. Jobic and D. Theodorou, Microporous Mesoporous Mater. 102, 21 (2007).

    Article  CAS  Google Scholar 

  160. H. Jobic, D. I. Kolokolov, A. G. Stepanov, et al., J. Phys. Chem. C 119, 16 115 (2015).

    Article  CAS  Google Scholar 

  161. L. van Hove, Phys. Rev. 95, 249 (1954).

    Article  CAS  Google Scholar 

  162. P. A. Egelstaff, Adv. Phys. 11, 203 (1962).

    Article  CAS  Google Scholar 

  163. R. K. Thomas, Prog. Solid State Chem. 14, 1 (1982).

    Article  CAS  Google Scholar 

  164. M. Bee, Quasielastic Neutron Scattering (Adam Hilger, Bristol, 1988).

    Google Scholar 

  165. H. W. Spiess, NMR—Basic Principles and Progress (Springer, Berlin, 1978), Vol. 15, p. 55.

    Google Scholar 

  166. B. Zibrowius, J. Caro, and H. Pfeifer, J. Chem. Soc., Faraday Trans. 1 84, 2347 (1988).

    Article  CAS  Google Scholar 

  167. D. E. Favre, D. J. Schaefer, S. M. Auerbach, and B. F. Chmelka, Phys. Rev. Lett. 81, 5852 (1998).

    Article  CAS  Google Scholar 

  168. B. Geil, O. Isfort, B. Boddenberg, et al., J. Chem. Phys. 116, 2184 (2002).

    Article  CAS  Google Scholar 

  169. A. G. Stepanov, A. A. Shubin, M. V. Luzgin, et al., J. Phys. Chem. B 107, 7095 (2003).

    Article  CAS  Google Scholar 

  170. N. Rosenbach, H. Jobic, A. Ghoufi, et al., Angew. Chem., Int. Ed. Engl. 47, 6611 (2008).

    Article  CAS  Google Scholar 

  171. F. Salles, H. Jobic, T. Devic, et al, ACS Nano 4, 143 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. N. Rosenbach, H. Jobic, A. Ghoufi, et al., J. Phys. Chem. C 118, 14471 (2014).

    Article  CAS  Google Scholar 

  173. J. Caro, M. Bulow, H. Jobic, et al., Adv. Catal. 39, 351 (1993).

    CAS  Google Scholar 

  174. H. Paoli, A. Methivier, H. Jobic, et al., Microporous Mesoporous Mater. 55, 147 (2002).

    Article  CAS  Google Scholar 

  175. H. Jobic, W. Schmidt, C. Krause, and J. Kärger, Microporous Mesoporous Mater. 90, 299 (2006).

    Article  CAS  Google Scholar 

  176. A. Feldhoff, J. Caro, H. Jobic, et al., ChemPhysChem 10, 2429 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. A. Lauerer, R. Kurzhals, H. Toufar, et al., J. Magn. Reson. 289, 1 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. J. Kärger, Adv. Colloid Interface Sci. 23, 129 (1985).

    Article  Google Scholar 

  179. E. J. Cabrita, S. Berger, P. Brauer, and J. Kärger, J. Magn. Reson. 157, 124 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. M. Sharifi, M. Wark, D. Freude, and J. Haase, Microporous Mesoporous Mater. 156, 80 (2012).

    Article  CAS  Google Scholar 

  181. N. Dvoyashkina, C. F. Seidler, M. Wark, et al., Microporous Mesoporous Mater. 255, 140 (2018).

    Article  CAS  Google Scholar 

  182. D. Freude and J. Haase, www.quad-nmr.de (2013‒2016).

  183. D. Freude, S. Beckert, F. Stallmach, et al., Microporous Mesoporous Mater. 172, 174 (2013).

    Article  CAS  Google Scholar 

  184. D. Peralta, G. Chaplais, J.-L. Paillaud, et al., Microporous Mesoporous Mater. 173, 1 (2013).

    Article  CAS  Google Scholar 

  185. D. I. Kolokolov, H. Jobic, A. G. Stepanov, et al., J. Phys. Chem. C 116, 15 093 (2012).

    Article  CAS  Google Scholar 

  186. D. I. Kolokolov, L. Diestel, J. Caro, et al., J. Phys. Chem. C 118, 12873 (2014).

    Article  CAS  Google Scholar 

  187. A. G. Popov, V. S. Pavlov, and I. I. Ivanova, J. Catal. 335, 155 (2016).

    Article  CAS  Google Scholar 

  188. W. Heink, J. Kärger, H. Pfeifer, et al., J. Chem. Soc. Faraday Trans 88, 3505 (1992).

    Article  CAS  Google Scholar 

  189. N. Dvoyashkina, D. Freude, A. G. Stepanov, et al., Microporous Mesoporous Mater. 257, 128 (2018).

    Article  CAS  Google Scholar 

  190. C. Chmelik, A. Varma, L. Heinkeet al., Chem. Mater. 19, 6012 (2007).

    Article  CAS  Google Scholar 

  191. L. Gueudre, T. Binder, C. Chmelik, et al., Materials (open access) 5, 721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. S. Hwang, B. Parditka, C. Cserhati, et al., Chem. Ing. Tech. 89, 1686 (2017).

    Article  CAS  Google Scholar 

  193. J. Kärger and P. Volkmer, J. Chem. Soc., Faraday Trans. 1 76, 1562 (1980).

    Article  Google Scholar 

  194. J. Kärger, Ann. Phys. 24, 1 (1969).

    Article  Google Scholar 

  195. M. Schönhoff and O. Söderman, J. Phys. Chem. B 101, 8237 (1997).

    Article  Google Scholar 

  196. J.-P. Melchior, G. Majer, and K.-D. Kreuer, Phys Chem Chem Phys 19, 601 (2016).

    Article  PubMed  Google Scholar 

  197. R. P. Choudhury and M. Schönhoff, J. Chem. Phys. 127, 234702 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. A. S. D. Ferreira, S. Barreiros, and E. J. Cabrita, Magn. Reson. Chem. 55, 452 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. A. R. Waldeck, P. W. Kuchel, A. J. Lennon, and B. E. Chapman, Prog. Nucl. Magn. Reson. Spectrosc. 30, 39 (1997).

    Article  CAS  Google Scholar 

  200. K. I. Momot and P. W. Kuchel, Concepts Magn. Reson. 19A Part A, 51 (2003).

  201. N. Gilani, P. Malcolm, and G. Johnson, Magn. Reson. Med. 78, 316 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. E. Fieremans, D. S. Novikov, J. H. Jensen, and J. A. Helpern, NMR Biomed. 23, 711 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. N. Moutal, M. Nilsson, D. Topgaard, and D. Grebenkov, J. Magn. Reson. 296, 72 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Diffusive Spreading in Nature, Technology and Society, Ed. by A. Bunde, J. Caro, J. Kärger, and G. Vogl (Springer International, Cham, 2018).

    Google Scholar 

  205. G. S. Zhdanov and M. S. Lozhkin, Diffusion Fundamentals 30 (8), 1 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We dedicate this overview to the memory of Sergey Petrovich Zhdanov as one of the great pioneers in zeolite research, in deep appreciation of and gratitude for his oeuvre. Two of us (JK and DF) extend their appreciation to the whole Zhdanov family up to our days for continued friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kärger.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kärger, J., Freude, D., Ivanova, I.I. et al. Diffusion in Nanoporous Materials: from Paradigm Shift by Zhdanov Zeolites Till Recent Insight. Pet. Chem. 59, 275–296 (2019). https://doi.org/10.1134/S0965544119030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119030071

Navigation