Log in

Local Bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky Equations and in Their Generalizations

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A periodic boundary value problem for a nonlinear evolution equation that takes the form of such well-known equations of mathematical physics as the Cahn–Hilliard, Kuramoto–Sivashinsky, and Kawahara equations for specific values of its coefficients is studied. Three bifurcation problems arising when the stability of the spatially homogeneous equilibrium states changes are studied. The analysis of these problems is based on the method of invariant manifolds, the normal form techniques for dynamic systems with an infinite-dimensional space of initial conditions, and asymptotic methods of analysis. Asymptotic formulas for the bifurcation solutions are found, and stability of these solutions is analyzed. For the Kuramoto–Sivashinsky and Kawahara equations, it is proved that a two-dimensional local attractor exists such that all solutions on it are unstable in Lyapunov’s sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).

    Book  MATH  Google Scholar 

  2. G. I. Sivashinsky, “Weak turbulence in periodic flow,” Physica D 17, 234–255 (1985).

    Article  MathSciNet  Google Scholar 

  3. Dissipative Solitons, ed. by N. Akhmediev and A. Ankevich (Fizmatlit, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  4. T. Kawahara and M. Takaoka, “Chaotic behaviour of solutions lattice in an unstable dissipative-dispersive nonlinear system”, Physica D 39, 4095–4099 (1989).

    Article  MATH  Google Scholar 

  5. **e Yuan-**, “New explicit and exact solutions of the Benney–Kawahara–Lin equation,” Chinese Phys. B 18, 4094–4099 (2009).

    Article  Google Scholar 

  6. J. K. Hunter and J. Scheurle, “Existence of perturbed solitary wave solutions to a model equation for water waves,” Physica D 32, 253–268 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. V. Porubov, “Exact travelling wave solutions of nonlinear evolution equation of surface waves in a convecting fluid,” J. Phys. A: Math. Gen. 26, 797–800 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. V. Porubov, Localization of Nonlinear Deformation Waves (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  9. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system 1. Interfacial free energy,” J. Chem. Phys. 28, 258–267 (1958).

    Article  Google Scholar 

  10. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography by ion bombardment,” J. Vac. Technol. A. 6, 2390–2995 (1988).

    Article  Google Scholar 

  11. V. I. Emel’yanov, “Kuramoto–Sivashinsky equation of modulation of surface relief of molten layer and formation of surface microstructures under pulsed irradition of solid,” Laser Phys. 21, 222–228 (2011).

    Article  Google Scholar 

  12. A. N. Kulikov and D. A. Kulikov, “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment,” Comput. Math. Math. Phys. 52, 800–814 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. N. Kulikov and D. A. Kulikov, “Bifurcations of spatially inhomogeneous solutions in two boundary value problems for the generalized Kuramoto-Sivashinsky equation,” Vest. Mosc. Phys.-Tekhn. Inst. 4, 408–415 (2014).

    Google Scholar 

  14. A. N. Kulikov and D. A. Kulikov, “Inhomogeneous solutions for a modified Kuramoto-Sivashinsky equation,” J. Math. Sci. 219(2), 173–183 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics (Leningr. Gos. Univ., Leningrad, 1950) [in Russian].

    Google Scholar 

  16. P. E. Sobolevskii, “On parabolic equations in the Banach space,” Tr. Mosc. Mat. Ob-va 10, 297–350 (1961).

    Google Scholar 

  17. S. G. Krein, Linear Differential Equations in the Banach Space (Nauka, Moscow, 1967), pp. 76–103 [in Russian].

  18. J. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications (Springer, Heidelberg, 1976), pp. 11–57.

  19. A. N. Kulikov, “On smooth invariant manifolds of the semi-group of nonlinear operators in the Banach space,” in Studies on Stability and Theory of Oscillations (Yaroslavl’, 1976), pp. 114–129.

  20. A. N. Kulikov, “Inertial manifolds of nonlinear autonomous differential equations in the Hilbert space,” Preprint of the Inst. of Applied Mathematics, Moscow, 1991, no. 85.

  21. A. Yu. Kolesov, A. N. Kulikov, and N. Kh. Rozov, “Invariant tori of a class of point map**s: The annulus principle,” Differ. Equations 39, 614–631 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Yu. Kolesov, A. N. Kulikov, and N. Kh. Rozov, “Invariant tori of a class of point map**s: Preservation of an invariant torus under perturbations,” Differ. Equations 39, 775–790 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Yu. Kolesov and N. Kh. Rozov, Invariant Tori of Nonlinear Wave equations (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  24. A. N. Kulikov, “On bifurcations of the birth of invariant tori,” in Studies on Stability and Theory of Oscillations (Yaroslavl’, 1983), pp. 112–117.

  25. A. N. Kulikov, “Resonance of proper frequencies 1 : 2 as a reason for hard excitation of oscillations for the plate in ultrasonic gas,” Proc. of the Int. Congress ENOC-2008, St. Petersburg, 2008, pp. 1638–1643.

  26. A. N. Kulikov, “Bifurcations of small periodic solutions in the case close to the resonance 1 : 2 for a class of nonlinear evolution equations,” Dinam. Sist. 2 (30) (3–4), 241–258 (2012).

  27. A. N. Kulikov, “Attractors of two boundary value problems for a modified telegraph equation,” Nelinein. Dinamika 4 (1), 57–68 (2008).

    Article  Google Scholar 

  28. D. Armbruster, J. Guckenheimer, and P. Holmes, “Kuramoto–Sivashinsky dynamics on the center – unstable manifolds,” SIAM J. Appl. Math. 49, 676–691 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. G. Kevrekidis, B. Nicolaenko, and J. C. Scovel, “Back in the saddle again: A computer assisted study of the Kuramoto–Sivashinsky equation,” SIAM J. Appl. Math. 50, 760–790 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Nicolaenko, B. Scheurer, and R. Temam, “Some global dynamics properties of the Kuramoto–Sivashinsky equations: Nonlinear stability and attractors,” Physica D 16, 155–183 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  31. Li Changpin and Y. Zhonghua, “Bifurcation of two-dimensional Kuramoto–Sivashinsky equation,” Appl. Math. JCU 13, 263–270 (1998).

    MathSciNet  MATH  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kulikov.

Additional information

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, A.N., Kulikov, D.A. Local Bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky Equations and in Their Generalizations. Comput. Math. and Math. Phys. 59, 630–643 (2019). https://doi.org/10.1134/S0965542519040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542519040080

Keywords:

Navigation