Log in

Simulation of rarefied gas flows on the basis of the Boltzmann kinetic equation solved by applying a conservative projection method

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Flows of a simple rarefied gas and gas mixtures are computed on the basis of the Boltzmann kinetic equation, which is solved by applying various versions of the conservative projection method, namely, a two-point method for a simple gas and gas mixtures with a small difference between the molecular masses and a multipoint method in the case of a large mass difference. Examples of steady and unsteady flows are computed in a wide range of Mach and Knudsen numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Belotserkovskii and V. E. Yanitskii, “The statistical particles-in-cells method for solving rarefied gas dynamics problems,” USSR Comput. Math. Math. Phys. 15 (5), 101–114 (1975).

    Article  Google Scholar 

  2. A. Nordsieck and B. L. Hicks, “Monte Carlo evaluation of the Boltzmann collision integral,” Rarefied Gas Dyn. 1, 695–710 (1967).

    Google Scholar 

  3. V. V. Aristov and F. G. Cheremisin, “The conservative splitting method for solving Boltzmann’s equation,” USSR Comput. Math. Math. Phys. 20 (1), 208–225 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. G. Tcheremissine, “Conservative discrete ordinates method for solving Boltzmann kinetic equation,” in Communications on Applied Mathematics (Russ. Acad. Sci. Comput. Center, Moscow, 1996).

    Google Scholar 

  5. F. G. Cheremisin, “Conservative method of calculating the Boltzmann collision integral,” Phys. Dokl. 42 (1), 607–610 (1997).

    MathSciNet  MATH  Google Scholar 

  6. F. G. Cheremisin, “Solving the Boltzmann equation in the case of passing to the hydrodynamic flow regime,” Phys. Dokl. 45 (8), 401–404 (2000).

    Article  MathSciNet  Google Scholar 

  7. F. G. Tcheremissine, “Solution to the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46 (2), 315–329 (2006).

    Article  MathSciNet  Google Scholar 

  8. A. A. Raines, “A method for solving Boltzmann’s equation for a gas mixture in the case of cylindrical symmetry in the velocity space,” Comput. Math. Math. Phys. 42 (8), 1212–1223 (2002).

    MathSciNet  MATH  Google Scholar 

  9. O. I. Dodulad and F. G. Tcheremissine, “Multipoint conservative projection method for computing the Boltzmann collision integral for gas mixtures,” in The 28th International Symposium on Rarefied Gas Dynamics (AIP Conf. Proc., 2012), Vol. 1501, pp. 302–309.

    Google Scholar 

  10. F. G. Tcheremissine, “Method for solving the Boltzmann kinetic equation for polyatomic gases,” Comput. Math. Math. Phys. 52 (2), 252–268 (2012).

    Article  MathSciNet  Google Scholar 

  11. Yu. A. Anikin and O. I. Dodulad, “Solution of a kinetic equation for diatomic gas with the use of differential scattering cross sections computed by the method of classical trajectories,” Comput. Math. Math. Phys. 53 (7), 1026–1043 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. V. Aristov and F. G. Cheremisin, “Splitting the inhomogeneous kinetic operator of the Boltzmann equation,” Dokl. Akad. Nauk SSSR 231 (1), 49–52 (1976).

    MATH  Google Scholar 

  13. A. V. Bobylev and T. Ohwada, “On the generalization of Strang’s splitting scheme,” Riv. Math. Univ. Parma 6 (2), 235–243 (1999).

    MathSciNet  MATH  Google Scholar 

  14. N. M. Korobov, Number-Theoretic Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) [in Russian].

    MATH  Google Scholar 

  15. Y. A. Anikin, O. I. Dodulad, Y. Y. Kloss, D. V. Martynov, P. V. Shuvalov, and F. G. Tcheremissine, “Development of applied software for analysis of gas flows in vacuum devices,” Vacuum 86 (11), 1770–1777 (2012).

    Article  Google Scholar 

  16. I. I. Bazhenov, O. I. Dodulad, I. D. Ivanova, Y. Y. Kloss, V. V. Rjabchenkov, P. V. Shuvalov, and F. G. Tcheremissine, “Problem solving environment for gas flow simulation in micro structures on the basis of the Boltzmann equation,” Proceedings of the 13th International Conference on Mathematical Methods in Science and Engineering CMMSE 2013 (Spain, 2013), pp. 246–257.

    Google Scholar 

  17. Yu. Yu. Kloss, N. I. Khokhlov, F. G. Tcheremissine, and B. A. Shurygin, “Development of numerical schemes for solving kinetic equations in cluster environments on the basis of MPI technology,” Inf. Protsessy 7 (4), 425–431 (2007).

    Google Scholar 

  18. Yu. Yu. Kloss, P. V. Shuvalov, and F. G. Tcheremissine, “Solving Boltzmann equation on GPU,” Proc. Computer Sci. ICCS 1 (1), 1077–1085 (2010).

    MATH  Google Scholar 

  19. O. I. Dodulad and F. G. Tcheremissine, “Computation of a shock wave structure in monatomic gas with accuracy control,” Comput. Math. Math. Phys. 53 (6), 827–844 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam,” J. Fluid Mech. 74, 497–513 (1976).

    Article  Google Scholar 

  21. W. Garen, R. Synofzik, and A. Frohn, “Shock tube for generation of weak shock waves,” AIAA J. 12, 1132–1134 (1974).

    Article  Google Scholar 

  22. V. Yu. Velikodnyi, A. V. Emel’yanov, and A. V. Eremin, “Diabatic excitation of iodine molecules in the translational nonequilibrium zone of a shock wave,” Tech. Phys. 44 (10), 1150–1158 (1999).

    Article  Google Scholar 

  23. O. I. Dodulad, Yu. Yu. Kloss, and F. G. Tcheremissine, “Computation of shock wave structure in a gas mixture by solving the Boltzmann equation,” Fiz.-Khim. Kinetika Gaz. Din. 14 (1), 1–18 (2013).

    Google Scholar 

  24. A. S. Gmurczyk, M. Tarczynski, and Z. A. Walenta, “Shock wave structure in the binary mixtures of gases with disparate molecular masses,” in The 11th International Symposium on Rarefied Gas Dynamics (1978), Vol. 1, pp. 333–341.

    Google Scholar 

  25. C. Chung, K. J. D. Wittt, D. Jeng, and P. F. Penko, “Internal structure of shock waves in disparate mass mixture,” J. Thermophys. 7 (4), 742–744 (1993).

    Article  Google Scholar 

  26. Nobuya Miyoshi, et al., “Development of ultra small shock tube for high energy molecular beam source, in The 26th International Symposium on Rarefied Gas Dynamics (AIP Conf. Proc., 2009), Vol. 1084, pp. 557–562.

    Google Scholar 

  27. Yu. Yu. Kloss, F. G. Tcheremissine, and P. V. Shuvalov, “Solution of the Boltzmann equation for unsteady flows with shock waves in narrow channels,” Comput. Math. Math. Phys. 50 (6), 1093–1103 (2010).

    Article  MathSciNet  Google Scholar 

  28. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954; Inostrannaya Literatura, Moscow, 1961).

    MATH  Google Scholar 

  29. S. Takata, H. Sugimoto, and S. Kosuge, “Gas separation by means of the Knudsen compressor,” Eur. J. Mech. 26 (2), 155–181 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Dodulad.

Additional information

Dedicated to the memory of O.M. Belotserkovskii

Original Russian Text © O.I. Dodulad, Yu.Yu. Kloss, A.P. Potapov, F.G. Tcheremissine, P.V. Shuvalov, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 6, pp. 1008–1024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodulad, O.I., Kloss, Y.Y., Potapov, A.P. et al. Simulation of rarefied gas flows on the basis of the Boltzmann kinetic equation solved by applying a conservative projection method. Comput. Math. and Math. Phys. 56, 996–1011 (2016). https://doi.org/10.1134/S0965542516060117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516060117

Keywords

Navigation