Log in

The Effects of the Concentration of Olivine Xenocrysts on the Viscosity of Kimberlite Melts: Experimental Evidence

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

The study of viscosity in sub-liquidus heterogeneous media, which includes kimberlite magma at the pressures and temperatures that prevail in the mantle, is an urgent task. We have conducted experiments in the serpentine–olivine, serpentine–CaCO3‒olivine, and native kimberlite–olivine systems at a pressure of 4 GPa and temperatures of 1400‒1600°С in a BARS high-pressure device using the technique of a falling Pt pellet. The samples were examined after experiments to find fine-grained chilled mass of crystals where the Pt pellet was observed at the time of chilling. The concentration of the solid phase was varied in the experiments between 10 and 50 wt %. We showed that when 50 wt % of olivine grains has been introduced, it was not possible to detect the motion of the Pt pellet, while when the concentration of olivine xenocrysts reached 10 wt %, the Pt pellet very rapidly descended to the bottom of the reaction volume. Viscosity was calculated using the Stokes method. We found that the viscosity of a homogeneous kimberlite melt at 4 GPa and 1600°С is below 2 Pa s, with the viscosity of a melt that contained up to 10 wt % of the solid phase being approximately constant. A kimberlite melt that contained 30 wt % of the solid phase had a viscosity on the order of 100 Pa s, while with 50 wt % of the solid phase the relative viscosity of an ultrabasic system increased to reach values over 1000 Pa s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardia, P., Giordano, D., and Schmidt, M.W., A model for the viscosity of rhyolite as a function of H2O-content and pressure: A calibration based on centrifuge piston cylinder experiments, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 6103–6123.

    Article  Google Scholar 

  • Bouhifd, M.A., Richet, P., Besson, P., et al., Redox state, microstructure and viscosity of partially crystallized basalt melt, Earth Planet. Sci. Lett., 2004, vol. 218, pp. 31–44.

    Article  Google Scholar 

  • Brett, R.C., Russell, J.K., and Moss, S., Origin of olivine in kimberlite: Phenocryst or impostor? Lithos, 2009, vol. 112S, pp. 201–212.

    Article  Google Scholar 

  • Brey, G.P. and Ryabchikov, I.D., Carbon dioxide in strongly silica undersaturated melts and origin of kimberlite magmas, N. Jarb. Mineral. Monatsh., 1994, vol. 10, pp. 449–463.

    Google Scholar 

  • Brown, R.J., Buse, B., Sparks, R.S.J., and Field, M., On the welding of pyroclasts from very low-viscosity magmas: Examples from kimberlite volcanoes, J. Geology, 2008, vol. 116(4), pp. 354–374.

    Article  Google Scholar 

  • Caricchi, L., Burlini, L., Ulmer, P., et al., Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics, Earth Planet. Sci. Lett., 2007, vol. 264, pp. 402–419.

    Article  Google Scholar 

  • Chepurov, A.I., Sonin, V.M., Surkov, N.V., et al., The project of experimental station of synchrotron radiation in VEPP-4M4 for research at high pressures and high temperatures on the multiple anvil apparatus BARS, Nuclear Instruments and Methods in Physics Research A, 2009, vol. 603, pp. 105–107.

    Article  Google Scholar 

  • Castruccio, A., Rust, A.C., and Sparks, R.S.J., Rheology and flow of crystal-bearing lavas: Insights from analogue gravity currents, Earth Planet. Sci. Lett., 2010, vol. 297, pp. 471–480.

    Article  Google Scholar 

  • Dawson, J.B., Kimberlites and Their Xenoliths, New York: Springer Verlag, 1980.

    Book  Google Scholar 

  • Chepurov, A.I., Zhimulev, E.I., Agafonov, L.V., et al., The stability of ortho-and clinopyroxenes, olivine, and garnet in kimberlitic magma, Russ. Geol. Geophys., 2013, vol. 54, no. 4, pp. 406–415.

    Article  Google Scholar 

  • Chepurov, A.I., Zhimulev, E.I., Sonin, V.M., et al., Experimental Estimation of the Rate of gravitation fractionating of xenocrysts in kimberlite magma at high P-T parameters, Dokl. Earth Sci., 2011, vol. 440, no. 2, pp. 1427–1430.

    Article  Google Scholar 

  • Chepurov, A.I., Fedorov, I.I., and Sonin, V.M., Experimental studies of diamond formation at high PTparameters (supplement to the model for natural diamond formation), Geol. Geofiz., 1998, vol. 39, no. 2, pp. 234–244.

    Google Scholar 

  • Chepurov, A.I., Sonin, V.M., Kirdyashkin, A.A., and Zhimulev, E.I., Use of a pressless multianvil high-pressure split-sphere apparatus to measure the silicate melt viscosity, J. Appl. Mech. Tech., 2009, vol. 50, no. 5, pp. 826–830.

    Article  Google Scholar 

  • Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., et al., The conservation of an aqueous fluid in inclusions in minerals and their interstices at high pressures and temperatures during the decomposition of antigorite, Russ. Geol. Geophys., 2012, vol. 53, no. 3, pp. 234–246.

    Article  Google Scholar 

  • Chepurov, A.I., Tomilenko, A.A., Zhimulev, E.I., et al., Problem of water in the upper mantle: Antigorite breakdown, Dokl. Earth Sci., 2010, vol. 434, no. 1, pp. 1275–1278.

    Article  Google Scholar 

  • Dawson, J.B. and Hawthorne, J.B., Intrusion features of some hypabyssal South African kimberlites, Bulletin of Volcanology, 1969, vol. 34(3), pp. 740–757.

    Article  Google Scholar 

  • Dingwell, D.B. and Mysen, D.O., Effects of water and fluorine on the viscosity of albite melts at high pressure: A preliminary investigation, Earth Planet. Sci. Lett., 1985, vol. 74, pp. 266–274.

    Article  Google Scholar 

  • Dingwell, D.B., Courtial, P., Giordano, D., and Nichols, A.R.L., Viscosity of peridotite liquid, Earth Planet. Sci. Lett., 2004, vol. 226, pp. 127–138.

    Article  Google Scholar 

  • Dreibus, G., Brey, G.P., and Girnis, A.V., The role of carbon dioxide in the generation and emplacement of kimberlite magmas: New experimental data on CO2 solubility, in Extended Abstracts 6th International Kimberlite Conference, 1995, pp. 80–82.

    Google Scholar 

  • Gernon, T.M., Gilbertson, M.A., Sparks, R.S.J., and Field, M., The role of gas-fluidization in the formation of massive volcaniclastic kimberlite, Lithos, 2009, vol. 1125, pp. 439–451.

    Article  Google Scholar 

  • Giordano, D., Romano, C., Dingwell, D.B., et al., The combined effects of water and fluorine on the viscosity of silicic magmas, Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5159–5168.

    Article  Google Scholar 

  • Giordano, D., Potuzak, M., Romano, C., et al., Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8 -CaMgSi2O6, Chemical Geology, 2008a, vol. 256, pp. 203–215.

    Article  Google Scholar 

  • Giordano, D., Russell, J.K., and Dingwell, D.B., Viscosity of magmatic liquids: A model, Earth Planet. Sci. Lett., 2008b, vol. 271, pp. 123–134.

    Article  Google Scholar 

  • Girnis, A.V., Bulatov, B.K., and Brey, G.P., Transition of kimberlite melts into carbonatite melts at mantle parameters: experimental study, Petrology, 2005, vol. 13(1), pp. 3–8.

    Google Scholar 

  • Hammouda, T. and Laporte, D., Ultrafast mantle impregnation by carbonatite melts, Geology, 2000, vol. 28, pp. 283–285.

    Article  Google Scholar 

  • Hess, K.U. and Dingwell, D.G., Viscosities of hydrous leucogranitic melts: A non-Arrhenian model, American Mineralogist, 1996, vol. 81, pp. 1297–1300.

    Google Scholar 

  • Hobiger, M., Sonder, I., Buttner, R., and Zimanowski, B., Viscosity characteristics of selected volcanic rock melts, J. Volcanology and Geothermal Res., 2011, vol. 200, pp. 27–34.

    Article  Google Scholar 

  • Ishibashi, H. and Sato, H., Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan, J. of Volcanology and Geothermal Res., 2007, vol. 160, pp. 223–238.

    Article  Google Scholar 

  • Kavanagh, J.L. and Sparks, R.S.J., Temperature changes in ascending kimberlite magma, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 404–413.

    Article  Google Scholar 

  • Kennedy, C.S. and Kennedy, G.C., The equilibrium boundary between graphite and diamond, J. Geophys. Res., 1976, vol. 81(14), pp. 2467–2470.

    Article  Google Scholar 

  • Kopylova, M.G., Matveev, S., and Raudsepp, M., Searching for parental kimberlite melt, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 3616–3629.

    Article  Google Scholar 

  • Kushiro, I., Yoder, J.R., and Mysen, B.O., Viscosities of basalt and andesite melts at high pressures, J. Geophys. Res., 1976, vol. 81(35), pp. 6351–6356.

    Article  Google Scholar 

  • Lacks, D.J., Rear, D.B., and Orman, J.A.V., Molecular dynamics investigation of viscosity, chemical diffusivities and partial molar volumes of liquids along the MgO–SiO2 join as functions of pressure, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 1312–1323.

    Article  Google Scholar 

  • Lejeune, A.M. and Richet, P., Rheology of crystal-bearing silicate melts: An experimental study at high viscosities, J. Geophys. Res., 1995, vol. 100, pp. 4215–4229.

    Article  Google Scholar 

  • Lejeune, A.M., Bottinga, Y., Trull, T.W., and Ritchet, P., Rheology of bubble bearing magmas, Earth Planet. Sci. Lett., 1999, vol. 166(1-2), pp. 71–84.

    Article  Google Scholar 

  • Liebske, C., Behrens, H., Holtz, F., and Lange, R.A., The influence of pressure and composition on the viscosity of andesitic melts, Geochim. et Cosmochim. Acta, 2003, vol. 67, pp. 473–485.

    Article  Google Scholar 

  • Liebske, C., Schmickler, B., Terasaki, H., et al., Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 589–604.

    Article  Google Scholar 

  • Marsh, B.D., On the crystallinity, probability of occurrence, and rheology of lava and magma, Contributions to Mineralogy and Petrology, 1981, vol. 78, pp. 85–98.

    Article  Google Scholar 

  • Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology, N. Y.: Plenum Press, 1986.

    Book  Google Scholar 

  • Mitchell, R.H., Petrology of hypabyssal kimberlites: Relevance to primary magma compositions, J. of Volcanology and Geothermal Res., 2008, vol. 174, pp. 1–8.

    Article  Google Scholar 

  • Moss, S., Russell, J.K., Brett, R.C., and Andrews, G.D.M., Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada, Lithos, 2009, vol. 112, pp. 541–552.

    Google Scholar 

  • Patterson, M., Francis, D., and McCandless, T., Kimberlites: Magmas or mixtures? Lithos, 2009, vol. 112S, pp. 191–200.

    Article  Google Scholar 

  • Persikov, E.S., The viscosity of magmatic liquids: experiment, generalized patterns. A model for calculation and prediction, Applications, Advances in Physical Chemistry, 1991, vol. 9, pp. 1–4.

    Google Scholar 

  • Persikov, E.S. and Bukhtiyarov, P.G., The effect of dissolved water on the time-dependent viscosity of kimberlite and basaltic magmas during their origination, evolution, and ascent from mantle to crust, Eksperimental’naya Geokhimiya, 2014, vol. 2, no. 2, pp. 236–240.

    Google Scholar 

  • Petford, N., Which effective viscosity? Mineralogical Magazine, 2009, vol. 73(2), pp. 167–191.

    Article  Google Scholar 

  • Pinkerton, H. and Stevenson, R.J., Methods of determining the rheological properties of magmas at sub-liquidus temperatures, J. of Volcanology and Geothermal Res., 1992, vol. 53, pp. 47–66.

    Article  Google Scholar 

  • Poe, B.T., Romano, C., Liebske, C., et al., High-temperature viscosity measurements of hydrous albite liquid using in-situ falling-sphere viscometry at 2.5 GPa, Chemical Geology, 2006, vol. 229, pp. 2–9.

    Article  Google Scholar 

  • Price, S.E., Russell, J.K., and Kopylova, M.G., Primitive magma from the Jericho Pipe, N. W. T., Canada: Constrains on primary kimberlite melt chemistry, J. Petrology, 2000, vol. 41, pp. 789–808.

    Google Scholar 

  • Priestley, K., McKenzie, D.O., and Debayle, E., The state of the upper mantle beneath southern Africa, Tectonophysics, 2006, vol. 416, pp. 101–112.

    Article  Google Scholar 

  • Reid, J.E., Suzuki, A., Funakoshi, K., et al., The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa, Physics of the Earth and Planet. Interior, 2003, vol. 139, pp. 45–54.

    Article  Google Scholar 

  • Richet, P., Lejeune, A.M., Holtz, F., and Roux, J., Water and the viscosity of andesite melts, Chemical Geology, 1996, vol. 128, pp. 185–197.

    Article  Google Scholar 

  • Romano, C., Poe, B.T., Mincione, V., et al., The viscosity of dry and hydrous XAlSi3O8 (X = Li, Na, K, Ca0.5Mg0.5) melts, Chemical Geology, 2001, vol. 174, pp. 115–132.

    Article  Google Scholar 

  • Roscoe, R., The viscosity of suspensions of rigid spheres, British J. of Applied Physics, 1952, vol. 3, pp. 267–269.

    Article  Google Scholar 

  • Saar, M.O. and Manga, M., Continuum percolation for randomly oriented soft-core prisms, Physical Review E, 2002, vol. 65, pp. 1–6.

    Article  Google Scholar 

  • Sakamaki, T., Ohtani, E., Urakawa, S., et al., Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method, Earth and Planet. Sci. Lett., 2009, vol. 287, pp. 293–297.

    Article  Google Scholar 

  • Sato, H., Viscosity measurement of sub-liquidus magmas: 1707 basalt of Fuji volcano, J. Mineral. Petrol. Sci., 2005, vol. 100, pp. 133–142.

    Article  Google Scholar 

  • Shaw, H.R., Obsidian–H2O viscosities at 100 and 200 bars in the temperature range 700 to 900°C, J. Geophys. Res., 1963, vol. 68, pp. 6337–6342.

    Article  Google Scholar 

  • Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., et al., Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution, Russ. Geol. Geophys., 2015, vol. 56, nos. 1-2, pp. 260–279.

    Article  Google Scholar 

  • Sparks, R.S.J., Baker, L., Brown, R.J., et al., Dynamic constraints on kimberlite volcanism, J. of Volcanology and Geothermal Res., 2006, vol. 155, pp. 18–48.

    Article  Google Scholar 

  • Sparks, R.S.J., Brooker, R.A., Field, M., et al., The nature of erupting kimberlite melts, Lithos, 2009, vol. 112, pp. 429–438.

    Article  Google Scholar 

  • Vetere, F., Behrens, H., Holtz, F., and Neuville, D.R., Viscosity of andesite melts—new experimental data and a revised calculation model, Chemical Geology, 2006, vol. 228(4), pp. 233–245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chepurov.

Additional information

Original Russian Text © A.A. Chepurov, V.M. Sonin, A.I. Chepurov, A.A. Tomilenko, 2018, published in Vulkanologiya i Seismologiya, 2018, No. 2, pp. 73–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepurov, A.A., Sonin, V.M., Chepurov, A.I. et al. The Effects of the Concentration of Olivine Xenocrysts on the Viscosity of Kimberlite Melts: Experimental Evidence. J. Volcanolog. Seismol. 12, 140–149 (2018). https://doi.org/10.1134/S0742046318020033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046318020033

Navigation