Log in

Current Theoretical and Applied Research on Energy- and Resource-Saving Highly Reliable Chemical Process Systems Engineering

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The history of the formation and development of a new field of research in chemical technology, such as the theory of chemical process systems engineering, including methods for the analysis, optimization, and synthesis of chemical process systems (CPSs), is briefly surveyed. A classification of the modern engineering main types is given. Methods and techniques for chemical processes (CPs) and chemical process systems intensification and methods for digitalized physical and chemical engineering, the computer simulation of the texture of nanocomposites, and computer-aided chemical diagnostics in materials science are described. Methods and algorithms are given for the analysis of fractal and statistical characteristics of unsteady gas flows in complex gas pipelines. Methods and techniques for energy conservation in chemical process systems are briefly described; the basic concepts of resource and energy-saving logistics are outlined. A brief description of the principles of the computer-aided synthesis of optimal energy- and resource-efficient chemical process systems is given. The essence of digital transformation and automated management of the operation of production facilities of the chemical, petrochemical, and fuel and energy complexes is briefly outlined. The essence of the multilevel training of chemical engineers and technologists in energy-saving environmentally safe chemical process systems engineering is stated. The main topical priority fields of research in energy- and resource-efficient environmentally safe chemical process systems engineering are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Meshalkin, V.P., Vvedenie v inzhiniring energoresursosberegayushchikh khimiko-tekhnologicheskikh sistem (Introduction to the Energy-Resource Saving Chemical Process Systems Engineering), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2020.

  2. Zhavoronkov, N.M., Kafarov, V.V., Perov, V.L., and Meshalkin, V.P., New principles of chemical process systems analysis and synthesis, Teor. Osn. Khim. Tekhnol., 1970, vol. 4, no. 2, pp. 152–167.

    CAS  Google Scholar 

  3. Kafarov, V.V. and Meshalkin, V.P., Analiz i sintez khimiko-tekhnologicheskikh sistems (Chemical Process Systems Analysis and Synthesis), Moscow: Khimiya, 1991.

  4. Meshalkin, V.P., Energy-saving technology performance and efficiency indexes, Chem. Eng. Trans., 2009, vol. 18, pp. 953–958.

    Google Scholar 

  5. Meshalkin, V.P., Tovazhnyanskii, L.L., and Kapustenko, P.A., Osnovy energoresursoeffektivnykh ekologicheski bezopasnykh tekhnologii neftepererabotki (Fundamentals of Energy Efficient and Environmentally Safe Refining Technologies), Kharkov: Nats. Tekh. Univ., KhPI, 2011.

  6. Meshalkin, V.P., Chem. Eng. Trans., 2009, vol. 18, p. 953. https://doi.org/10.3303/CET0918156

    Article  Google Scholar 

  7. Grossmann, I.E. and Harjunkoski, I., Comput. Chem. Eng., 2019, vol. 126, p. 474. https://doi.org/10.1016/j.compchemeng.2019.04.028

    Article  CAS  Google Scholar 

  8. Meshalkin, V.P. and Khodchenko, S.M., Polym. Sci., Ser. D, 2017, vol. 10, p. 347. https://doi.org/10.1134/S1995421217040128

    Article  CAS  Google Scholar 

  9. Meshalkin, V.P., Resursoenergoeffektivnye metody energoobespecheniya i minimizatsii otkhodov neftepererabatyvayushchikh proizvodstv: osnovy teorii i nailuchshie prakticheskie rezul’taty (Resource-Energy-Efficient Methods of Energy Supply and Waste Minimization of Oil Refineries: Theory Foundations and Best Practical Results), Moscow: Khimiya, 2009.

  10. European roadmap for process intensification. https://efce.info/efce_media/-p-531.pdf. Accessed January 21, 2021.

  11. Harmsen, J., Chem. Eng. Process., 2010, vol. 49, p. 70. https://doi.org/10.1016/j.cep.2009.11.009

    Article  CAS  Google Scholar 

  12. Becht, S., Franke, R., Geißelmann, A., and Hahn, H.A., Chem. Eng. Process., 2009, vol. 48, p. 329. https://doi.org/10.1016/j.cep.2008.04.012

    Article  CAS  Google Scholar 

  13. Pan European Survey—Image of the Chemical Industry 2004, Brussels: Eur. Counc. Chem. Manuf. Fed., 2004, p. 27.

  14. Mills, P.L., Quiram, D.J., and Ryley, J.F., Chem. Eng. Sci., 2007, vol. 62, p. 6992. https://doi.org/10.1016/j.ces.2007.09.021

    Article  CAS  Google Scholar 

  15. Process Intensification in Chemical Engineering: Design Optimization and Control, Segovia-Hernández, J.G. and Bonilla-Petriciolet, A., Eds., Cham: Springer-Verlag, 2016. https://doi.org/10.1007/978-3-319-28392-0.J.G

  16. Aboelazayem, O., Gadalla, M., and Saha, B., Energy, 2018, vol. 161, p. 299. https://doi.org/10.1016/j.energy.2018.07.139

    Article  CAS  Google Scholar 

  17. Sitter, S., Chen, Q., and Grossmann, I.E., Curr. Opin. Chem. Eng., 2019, vol. 25, p. 87. https://doi.org/10.1016/j.coche.2018.12.006

    Article  Google Scholar 

  18. Klemeš, J., Varbanov, P.S., Walmsley, T.G., and Jia, X., Renewable Sustainable Energy Rev., 2018, vol. 98, p. 439. https://doi.org/10.1016/j.rser.2018.09.030

    Article  Google Scholar 

  19. Klemeš, J.J., Varbanov, P.S., and Kravanja, Z., Chem. Eng. Res. Des., 2013, vol. 91, p. 2037. https://doi.org/10.1016/j.cherd.2013.08.019

    Article  CAS  Google Scholar 

  20. Meshalkin, V.P., Tovazhnyanskii, L.L., Ul’ev, L.M., Mel’nikovskaya, L.A., and Khodchenko, S.M., Teor. Osn. Khim. Tekhnol., 2012, vol. 46, p. 491.

    Google Scholar 

  21. Ulyev, L.M., Kanischev, M.V., and Chibisov, R.E., Chem. Eng. Trans., 2020, vol. 81, p. 283. https://doi.org/10.3303/CET2081048

    Article  Google Scholar 

  22. Kanischev, M.V., Ulyev, L.M., Chibisov, R.E., and Vasilyev, M.A., Chem. Eng. Trans., 2018, vol. 70, p. 1099. https://doi.org/10.3303/CET1870184

    Article  Google Scholar 

  23. Ulyev, L.M., Kanischev, M.V., Vasilyev, M.A. and Maatouk, A., Chem. Eng. Trans., 2018, vol. 70, p. 1513. https://doi.org/10.3303/CET1870253

    Article  Google Scholar 

  24. Chibisov, R.E., Kanishchev, M.V., Meshalkin, V.P., Ul’ev, L.M., and Vasil’ev, M.A., Energosberezhenie Vodopodgot., 2019, no. 2 (118), p. 31.

  25. Chibisov, R.E., Kanishchev, M.V., Meshalkin, V.P., Ul’ev, L.M., and Vasil’ev, M.A., Energosberezhenie Vodopodgot., 2019, no. 5(121), p. 9.

  26. Meshalkin, V.P., Ul’ev, L.M., Kanishchev, M.V., Chibisov, R.E., and Vasil’ev, M.A., Energosberezhenie Vodopodgot., 2019, no. 3(119), p. 19.

  27. Gordeev, E.G. and Ananikov, V.P., Russ. Chem. Rev., 2020, vol. 89, p. 1507. https://doi.org/10.1070/RCR4980

    Article  CAS  Google Scholar 

  28. Macdonald, N.P., Calot, J.M., Smejkal, P., Guijt, R.M., Paull, B., and Breadmore, M.C., Anal. Chem., 2017, vol. 89, p. 3858. https://doi.org/10.1021/acs.analchem.7b00136

    Article  CAS  PubMed  Google Scholar 

  29. Butusov, O.B., Meshalkin, V.P., Popov, D.V., and Tyukaev, D.A., Theor. Found. Chem. Eng., 2013, vol. 47, p. 702. https://doi.org/10.1134/S0040579513060031

    Article  CAS  Google Scholar 

  30. Sarkisov, P.D., Butusov, O.B., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2011, vol. 45, p. 1. https://doi.org/10.1134/S004057951101009X

    Article  CAS  Google Scholar 

  31. Sarkisov, P.D., Butusov, O.B., Meshalkin, V.P., Sevastianov, V.G., Galaev, A.B., and Vinokurov, E.G., Theor. Found. Chem. Eng., 2012, vol. 46, p. 329. https://doi.org/10.1134/S004057951204015X

    Article  CAS  Google Scholar 

  32. Butusov, O.B., Meshalkin, V.P., Orlova, L.A., Shchegoleva, N.E., and Kabanov, A.N., Theor. Found. Chem. Eng., 2016, vol. 50, p. 188. https://doi.org/10.1134/S0040579516020020

    Article  CAS  Google Scholar 

  33. Asvestas, P.A., J. Visual Commun. Image Representation, 1998, vol. 9, p. 392.

    Article  Google Scholar 

  34. Annadhason, A., Int. J. Comput. Sci. Inf. Technol. Secur., 2012, vol. 2, p. 166.

    Google Scholar 

  35. Bustillo Revuelta, M., Mineral Resources: From Exploration to Sustainability Assessment, New York: Springer-Verlag, 2018, vol. 96. https://doi.org/10.1007/978-3-319-58760-8

  36. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., and Rittmann, B.E., Environ. Sci. Technol., 2016, vol. 50, p. 6606. https://doi.org/10.1021/acs.est.6b01239

    Article  CAS  PubMed  Google Scholar 

  37. Elgharbi, S., Horchani-Naifer, K., and Ferid, M., J. Therm. Anal. Calorim., 2015, vol. 119, p. 265. https://doi.org/10.1007/s10973-014-4132-5

    Article  CAS  Google Scholar 

  38. Chen, Y.Q., Zhao, H.L., and Wang, C.Y., Int. J. Miner., Metall. Mater., 2017, vol. 24, p. 512. https://doi.org/10.1007/s12613-017-1432-3

    Article  CAS  Google Scholar 

  39. Wen, M., Zhang, T.-A., and Dou, Z.-H., Dongbei Daxue Xuebao, 2016, vol. 960. https://doi.org/10.3969/j.issn.1005-3026.2016.07.011

  40. Yuan, S., Zhou, W., Han, Y., and Li, Y., Powder Technol., 2019, vol. 361, p. 529. https://doi.org/10.1016/j.powtec.2019.11.082

    Article  CAS  Google Scholar 

  41. Bobkov, V.I., Borisov, V.V., Dli, M.I., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2017, vol. 51, p. 70. https://doi.org/10.1134/S0040579517010031

    Article  CAS  Google Scholar 

  42. Bobkov, V.I., Borisov, V.V., Dli, M.I., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2017, vol. 51, p. 307. https://doi.org/10.1134/S0040579517030022

    Article  CAS  Google Scholar 

  43. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Khodchenko, S.M., Dokl. Chem., 2017, vol. 475, p. 188. https://doi.org/10.1134/S0012500817080031

    Article  CAS  Google Scholar 

  44. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Khodchenko, S.M., Dokl. Chem., 2017, vol. 477, p. 282. https://doi.org/10.1134/S0012500817120023

    Article  CAS  Google Scholar 

  45. Bobkov, V.I., Borisov, V.V., Dli, M.I., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2015, vol. 49, p. 176. https://doi.org/10.1134/S0040579515020025

    Article  CAS  Google Scholar 

  46. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Dovì, V., Energies, 2019, vol. 12, p. 3376. https://doi.org/10.3390/en12173376

    Article  CAS  Google Scholar 

  47. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., and Khodchenko, S.M., Dokl. Chem., 2017, vol. 477, p. 286. https://doi.org/10.1134/S0012500817120059

    Article  CAS  Google Scholar 

  48. Meshalkin, V.P., Puchkov, A.Y., Dli, M.I., and Bobkov, V.I., Theor. Found. Chem. Eng., 2019, vol. 53, p. 463. https://doi.org/10.1134/S0040579519040237

    Article  CAS  Google Scholar 

  49. Zanaveskin, K.L., Maslennikov, A.N., Zanaveskina, S.M., and Vlasenko, V.I., Tsvetn. Met., 2017, no. 4, p. 47. https://doi.org/10.17580/tsm.2017.04.07

  50. Zanaveskin, K.L., Zanaveskina, S.M., Maslennikov, A.N., Politova, E.D., Vlasenko, V.I., and Zanaveskin, L.N., Russ. J. Appl. Chem., 2016, vol. 89, p. 1733. https://doi.org/10.1134/S107042721611001X

    Article  CAS  Google Scholar 

  51. Zanaveskin, K.L., Maslennikov, A.N., Zanaveskina, S.M., Dmitriev, G.S., Zanaveskin, L.N., Politova, E.D., and Vlasenko, V.I., Theor. Found. Chem. Eng., 2019, vol. 53, p. 669. https://doi.org/10.1134/S0040579519040110

    Article  Google Scholar 

  52. Zanaveskin, K.L., Maslennikov, A.N., Zanaveskina, S.M., and Dmitriev, G.S., Obogashch. Rud, 2016, no. 6, p. 14. https://doi.org/10.17580/or.2016.06.03

  53. Zanaveskin, K.L. and Meshalkin, V.P., Metall. Mater. Trans. B, 2020, vol. 51, p. 906. https://doi.org/10.1007/s11663-020-01810-2

    Article  CAS  Google Scholar 

  54. Vinokurov, E.G., Burukhina, T.F., and Guseva, T.V., Tekhnol. Met., 2020, no. 7, p. 2. https://doi.org/10.31044/1684-2499-2020-0-7-2-6

  55. Larson, C., Trans. Inst. Met. Finish., 2012, vol. 90, p. 232. https://doi.org/10.1179/0020296712Z.00000000054

    Article  CAS  Google Scholar 

  56. Larson, C., Trans. Inst. Met. Finish., 2017, vol. 95, p. 233. https://doi.org/10.1080/00202967.2017.1351642

    Article  CAS  Google Scholar 

  57. Larson, C., Trans. Inst. Met. Finish., 2019, vol. 97, p. 109. https://doi.org/10.1080/00202967.2019.1608711

    Article  CAS  Google Scholar 

  58. Vinokurov, E.G., Meshalkin, V.P., Vasilenko, E.A., Nevmyatullina, K.A., Burukhina, T.F., and Bondar’, V.V., Theor. Found. Chem. Eng., 2016, vol. 50, p. 730. https://doi.org/10.1134/S0040579516050389

    Article  CAS  Google Scholar 

  59. Vinokurov, E.G., Meshalkin, V.P., Nevmyatullina, K.A., Burukhina, T.F., Bondar’, V.V., and Khodchenko, S.M., Ekon. Matem. Metody, 2019, vol. 55, p. 43. https://doi.org/10.31044/1684-2499-2020-0-7-2-6

    Article  Google Scholar 

  60. Meshalkin, V.P., Vagramyan, T.A., Mazurova, D.V., Grigoryan, N.S., Abrashov, A.A., and Khodchenko, S.M., Dokl. Chem., 2020, vol. 490, p. 19. https://doi.org/10.1134/S001250082001005X

    Article  CAS  Google Scholar 

  61. Meshalkin, V.P., Abrashov, A.A., Vagramyan, T.A., Grigoryan, N.S., and Utochkina, D.S., Dokl. Chem., 2018, vol. 480, p. 132. https://doi.org/10.1134/S0012500818060046

    Article  CAS  Google Scholar 

  62. Meshalkin, V.P., Abrashov, A.A., Vagramyan, T.A., Grigoryan, N.S., and Utochkina, D.S., Dokl. Chem., 2017, vol. 475, p. 196. https://doi.org/10.1134/S0012500817080067

    Article  CAS  Google Scholar 

  63. Abrashov, A.A., Grigoryan, N.S., Vagramyan, T.A., Zheludkova, E.A., and Meshalkin, V.P., Russ. J. Appl. Chem., 2015, vol. 88, p. 1594. https://doi.org/10.1134/S1070427215100067

    Article  CAS  Google Scholar 

  64. Vinokurov, E.G. and Kudryavtsev, V.N., Prot. Met., 1992, vol. 28, p. 255.

    Google Scholar 

  65. Vinokurov, E.G. and Kudryavtsev, V.N., Zashch. Met., 1992, vol. 28, p. 331.

    CAS  Google Scholar 

  66. Vinokurov, E.G., Kuznetsov, V.V., and Bondar’, V.V., Russ. J. Coord. Chem., 2004, vol. 30, p. 496. https://doi.org/10.1023/B:RUCO.0000034791.29424.1b

    Article  CAS  Google Scholar 

  67. Kuznetsov, V.V., Vinokurov, E.G., Azarko, O.E., and Kudryavtsev, V.N., Russ. J. Electrochem., 1999, vol. 35, p. 698.

    CAS  Google Scholar 

  68. Kuznetsov, V.V., Vinokurov, E.G., and Kudryavtsev, V.N., Russ. J. Electrochem., 2000, vol. 36, p. 756. https://doi.org/10.1007/BF02757676

    Article  CAS  Google Scholar 

  69. Vinokurov, E.G., Demidov, A.V., and Bondar’, V.V., Russ. J. Coord. Chem., 2005, vol. 31, p. 14. https://doi.org/10.1007/s11173-005-0027-0

    Article  CAS  Google Scholar 

  70. Vinokurov, E.G., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 615. https://doi.org/10.1134/S2070205110050205

    Article  CAS  Google Scholar 

  71. Vinokurov, E.G., Mukhametova, G.M., Burukhina, T.F., Skopintsev, V.D., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2020, vol. 54, p. 474. https://doi.org/10.1134/S0040579520030136

    Article  CAS  Google Scholar 

  72. Vinokurov, E.G. and Bondar’, V.V., Theor. Found. Chem. Eng., 2007, vol. 41, p. 384. https://doi.org/10.1134/S0040579507040070

    Article  CAS  Google Scholar 

  73. Vinokurov, E.G., Mukhametova, G.M., Vasil’ev, V.V., Burukhina, T.F., and Skopintsev, V.D., Theor. Found. Chem. Eng., 2019, vol. 53, p. 544. https://doi.org/10.1134/S0040579519040286

    Article  CAS  Google Scholar 

  74. Vinokurov, E.G., Burukhina, T.F., and Napedenina, E.Yu., Galvanotekh. Obrab. Poverkhn., 2019, vol. 27, p. 43. https://doi.org/10.47188/0869-5326_2019_27_1_43

    Article  Google Scholar 

  75. Vinokurov, E.G., Burukhina, T.F., Kolesnikov, V.A., and Fadina, S.V., Theor. Found. Chem. Eng., 2012, vol. 46, p. 486. https://doi.org/10.1134/S004057951205020X

    Article  CAS  Google Scholar 

  76. Fadina, S.V., Vinokurov, E.G., Burukhina, T.F., and Kolesnikov, V.A., Theor. Found. Chem. Eng., 2013, vol. 47, p. 593. https://doi.org/10.1134/S0040579513040222

    Article  CAS  Google Scholar 

  77. Vasilenko, E.A., Vinokurov, E.G., Semenov, G.N., Pomogaev, V.M., and Bondar’, V.V., Nauchno-Tekh. Inf., Ser. 2: Inf. Processy Sist., 2016, no. 1, p. 21.

  78. Kolesnikov, A.V., Meshalkin, V.P., Davydkova, T.V., and Kolesnikov, V.A., Dokl. Phys. Chem., 2020, vol. 494, p. 133. https://doi.org/10.1134/S001250162009002X

    Article  CAS  Google Scholar 

  79. Meshalkin, V.P., Kolesnikov, A.V., Gaidukova, A.M., Achkasov, M.G., Kolesnikov, V.A., Belozerskii, A.Y., and Men’shova, I.I., Dokl. Phys. Chem., 2019, vol. 487, p. 99. https://doi.org/10.1134/S0012501619080025

    Article  CAS  Google Scholar 

  80. Meshalkin, V.P., Kolesnikov, A.V., Savel’ev, D.S., Kolesnikov, V.A., Belozerskii, A.Y., Men’shova, I.I., Maslyannikova, D.V., and Sycheva, O.V., Dokl. Phys. Chem., 2019, vol. 486, p. 83. https://doi.org/10.1134/S0012501619060034

    Article  CAS  Google Scholar 

  81. Meshalkin, V.P., Kolesnikov, V.A., Desyatov, A.V., Milyutina, A.D., and Kolesnikov, A.V., Dokl. Chem., 2017, vol. 476, p. 219. https://doi.org/10.1134/S001250081709004X

    Article  CAS  Google Scholar 

  82. Meshalkin, V.P., Kolesnikov, A.V., Kovalenko, V.S., and Gaidukov, E.N., Dokl. Chem., 2016, vol. 467, p. 105.

    Article  CAS  Google Scholar 

  83. Meshalkin, V., Shinkar, E., Berberova, N., Pivovarova, N., Ismagilov, F., and Okhlobystin, A., Energies, 2020, vol. 13, p. 5286. https://doi.org/10.3390/en13205286

    Article  CAS  Google Scholar 

  84. Meshalkin, V.P., Shulayev, N.S., and Pryanichnikova, V.V., Dokl. Chem., 2020, vol. 491, p. 61. https://doi.org/10.1134/S0012500820040023

    Article  CAS  Google Scholar 

  85. Meshalkin, V.P., Shulayev, N.S., Bykovsky, N.A., and Aristov, V.M., Dokl. Chem., 2020, vol. 494, p. 145. https://doi.org/10.1134/S0012500820090025

    Article  CAS  Google Scholar 

  86. Mohammadi, R., Tang, W., and Sillanpää, M., Desalination, 2021, vol. 498, p. 114626. https://doi.org/10.1016/j.desal.2020.114626

    Article  CAS  Google Scholar 

  87. Kruglikov, S.S., Galvanotekh. Obrab. Poverkhn., 2018, vol. 26, p. 41. https://doi.org/10.47188/0869-5326_2018_26_2_41

    Article  Google Scholar 

  88. Butusov, O.B. and Meshalkin, V.P., Komp’yuternoe modelirovanie nestatsionarnykh gazovykh potokov v slozhnykh truboprovodakh krugovogo secheniya (Computer Simulation of Unsteady Flows in Complex Pipelines), Moscow: Fizmatlit, 2005.

  89. Butusov, O.B. and Meshalkin, V.P., Theor. Found. Chem. Eng., 2006, vol. 40, p. 291. https://doi.org/10.1134/S0040579506030109

    Article  CAS  Google Scholar 

  90. Butusov, O.B. and Meshalkin, V.P., Theor. Found. Chem. Eng., 2008, vol. 42, p. 85. https://doi.org/10.1134/S0040579508010119

    Article  CAS  Google Scholar 

  91. Butusov, O.B. and Meshalkin, V.P., Theor. Found. Chem. Eng., 2008, vol. 42, p. 160. https://doi.org/10.1134/S0040579508020073

    Article  CAS  Google Scholar 

  92. Sarkisov, P.D., Butusov, O.B., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2009, vol. 43, p. 583. https://doi.org/10.1134/S0040579509050017

    Article  CAS  Google Scholar 

  93. Butusov, O.B., Gimranov, R.K., Kantyukov, R.A., Meshalkin, V.P., Popov, A.G., and Rizhenkov, I.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2015, vol. 58, p. 78.

    Google Scholar 

  94. Gimranov, R.K., Kantyukov, R.A., Butusov, O.B., Meshalkin, V.P., Popov, A.G., and Kantyukov, R.R., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2015, vol. 58, p. 82.

    CAS  Google Scholar 

  95. Kantyukov, R.A., Butusov, O.B., and Meshalkin, V.P., Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2017, vol. 19, p. 171.

    Google Scholar 

  96. Kantyukov, R.R., Meshalkin, V.P., and Butusov, O.B., Theor. Found. Chem. Eng., 2020, vol. 54, p. 1229. https://doi.org/10.1134/S0040579520060056

    Article  CAS  Google Scholar 

  97. Butusov, O.B., Kantyukov, R.A., and Meshalkin, V.P., Komp’yuternyi analiz gidrodinamiki nestatsionarnykh potokov v gazotransportnykh sistemakh (Computer Analysis of Hydrodynamics of Unsteady Flows in Gas-Transport Systems), St. Petersburg: Nedra, 2014.

  98. Meshalkin, V.P., Butusov, O.B., Kantyukov, R.A., and Belozersky, A.Yu., Dokl. Chem., 2020, vol. 495, p. 199.

    Article  CAS  Google Scholar 

  99. Mallat, S., A Wavelet Tour of Signal Processing. The Sparse Way, Amsterdam: Elsevier, 2009.

    Google Scholar 

  100. Heilbronner, R. and Barrett, S., Image Analysis in Earth Sciences: Microstructures and Textures of Earth Materials, Berlin: Springer-Verlag, 2014.

    Book  Google Scholar 

  101. Gimel’farb, G.L., Image Textures and Gibbs Random Fields, New York: Kluwer, 1999.

    Book  Google Scholar 

  102. Petrou, M. and Sevilla, P.G., Image Processing: Dealing with Texture, London: Wiley, 2006.

    Book  Google Scholar 

  103. Sarkisov, P.D., Butusov, O.B., Meshalkin, V.P., Sevast’yanov, V.G., and Galaev, A.B., Theor. Found. Chem. Eng., 2010, vol. 44, p. 838. https://doi.org/10.1134/S0040579510060023

    Article  CAS  Google Scholar 

  104. Sarkisov, P.D., Butusov, O.B., Meshalkin, V.P., Sevast’yanov, V.G., and Pashaev, V.B., Theor. Found. Chem. Eng., 2013, vol. 47, p. 83. https://doi.org/10.1134/S0040579513020073

    Article  CAS  Google Scholar 

  105. Butusov, O.B., Meshalkin, V.P., Popov, D.V., and Tyukaev, D.A., Theor. Found. Chem. Eng., 2013, vol. 47, p. 702. https://doi.org/10.1134/S0040579513060031

    Article  CAS  Google Scholar 

  106. Sarkisov, P.D., Butusov, O.B., and Meshalkin, V.P., Theor. Found. Chem. Eng., 2011, vol. 45, p. 1. https://doi.org/10.1134/S004057951101009X

    Article  CAS  Google Scholar 

  107. Sarkisov, P.D., Butusov, O.B., Meshalkin, V.P., Sevastianov, V.G., Galaev, A.B., and Vinokurov, E.G., Theor. Found. Chem. Eng., 2012, vol. 46, p. 329. https://doi.org/10.1134/S004057951204015X

    Article  CAS  Google Scholar 

  108. Butusov, O.B., Meshalkin, V.P., Orlova, L.A., Shchegoleva, N.E., and Kabanov, A.N., Theor. Found. Chem. Eng., 2016, vol. 50, p. 188. https://doi.org/10.1134/S0040579516020020

    Article  CAS  Google Scholar 

  109. Meshalkin, V.P., Dovi, V., and Marsanich, A., Printsipy promyshlennoi logistiki (Principles of Industrial Logistics), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2002.

  110. Meshalkin, V.P., Dovi, V., and Marsanich, A., Strategiya upravleniya logisticheskimi tsepyami khimicheskoi produktsii i ustoichivoe razvitie (Chemical Supply Chain Management Strategy and Sustainable Development), Moscow: Ross. Khim.-Tekhnol. Univ. im. D.I. Mendeleeva, 2003.

  111. van Dam, J., J. Inst. Petrol., 1968, vol. 54, p. 55.

    Google Scholar 

  112. Nimmanonda, P., Uraikul, V., Chan, C.W., and Tontiwachwuthikul, P., Ind. Eng. Chem. Res., 2004, vol. 43, p. 990. https://doi.org/10.1021/ie030268

    Article  CAS  Google Scholar 

  113. Barragán-Hernández, V., Vázquez-Román, R., Rosales-Marines, L., and García-Sánchez, F.A., Comput. Chem. Eng., 2005, vol. 30, p. 215.

    Article  CAS  Google Scholar 

  114. Meshalkin, V.P., Chionov, A.M., Kazak, A.S., and Aristov, V.M., Dokl. Chem., 2016, vol. 469, p. 241. https://doi.org/10.1134/S0012500816080048

    Article  CAS  Google Scholar 

  115. Meshalkin, V.P., Chionov, A.M., Kazak, A.S., and Aristov, V.M., Dokl. Chem., 2016, vol. 470, p. 279. https://doi.org/10.1134/S0012500816090020

    Article  CAS  Google Scholar 

  116. Goel, V., Grossmann, I.E., El-Bakry, A.S., and Mulkay, E.L., Comput. Chem. Eng., 2006, vol. 30, p. 1076. https://doi.org/10.1016/j.compchemeng.2006.02.006

    Article  CAS  Google Scholar 

  117. Kabirian, A. and Hemmati, M.R., Energy Policy, 2007, vol. 35, p. 5656. https://doi.org/10.1016/j.enpol.2007.05.022

    Article  Google Scholar 

  118. Wu, Y., Lai, K.K., and Liu, Y., Optim. Eng., 2007, vol. 8, p. 259. https://doi.org/10.1007/s11081-007-9018-y

    Article  Google Scholar 

  119. Floudas, C.A., Aggarwal, A., and Ciric, A.R., Comput. Chem. Eng., 1989, vol. 13, p. 1117. https://doi.org/10.1016/0098-1354(89)87016-4

    Article  CAS  Google Scholar 

  120. Osiadacz, A.J., Arch. Min. Sci., 2011, vol. 56, p. 335.

    Google Scholar 

  121. Osiadacz, A.J. and Chaczykowski, M., Arch. Min. Sci., 2016, vol. 61, p. 69. https://doi.org/10.1515/amsc-2016-0006

    Article  Google Scholar 

  122. Jonsbråten, T.W., J. Oper. Res. Soc., 1998, vol. 49, p. 811. https://doi.org/10.1057/palgrave.jors.2600562

    Article  Google Scholar 

  123. Chermak, J.M., Crafton, J., Norquist, S.M., and Patrick, R.H., Energy Econ., 1999, vol. 21, p. 67. https://doi.org/10.1016/S0140-9883(98)00004-8

    Article  Google Scholar 

  124. Wu, S., Ríos-Mercado, R.Z.E., Boyd, A., and Scott, L.R., Math. Comput. Model., 2000, vol. 31, p. 197.

    Article  Google Scholar 

  125. Pindyck, R.S., Energy J., 2001, vol. 22, p. 1. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol22-No3-1

    Article  Google Scholar 

  126. Cremer, H., Gasmi, F., and Laffont, J.J., J. Regul. Econ., 2003, vol. 24, p. 5. https://doi.org/10.1023/A:1023943613605

    Article  Google Scholar 

  127. Butusov, O.B., Kovernistyi, Yu.K., Meshalkin, V.P., and Mitin, S.G., Ekologo-ekonomicheskii analiz promyshlennykh predpriyatii (Ecological and Economic Analysis of Industrial Enterprises), Moscow: Voskresen’e, 2003.

  128. Meshalkin, V.P. and Butusov, O.B., Komp’yuternaya otsenka vozdeistviya na okruzhayushchuyu sredu magistral’nykh truboprovodov (Automated Assessment of the Environmental impact of Trunk Piplines). Moscow: INFRA-M, 2010.

  129. Hugo, A. and Pistikopoulos, E., J. Clean. Prod., 2005, vol. 13, p. 1471.

    Article  Google Scholar 

  130. Srivastava, S., Int. J. Manage. Rev., 2007, vol. 9, p. 53.

    Article  Google Scholar 

  131. Guillén-Gosálbez, G. and Grossmann, I., AICHE J., 2009, vol. 55, p. 99.

    Article  CAS  Google Scholar 

  132. Guillén-Gosálbez, G. and Grossmann, I., Comput. Chem. Eng., 2009, vol. 34, p. 42.

    Article  CAS  Google Scholar 

  133. Ruiz-Femenia, R., Guillén-Gosálbez, G., Jiménez, L., and Caballero, J., Chem. Eng. Sci., 2013, vol. 95, p. 1.

    Article  CAS  Google Scholar 

  134. Bojarski, A., Laínez, J., Espuña, A., and Puigjaner, L., Comput. Chem. Eng., 2009, vol. 33, p. 1747.

    Article  CAS  Google Scholar 

  135. Bekkering, J., Broekhuis, A.A., and van Gernert, W.J.T., Bioresour. Technol., 2010, vol. 101, p. 450.

    Article  CAS  PubMed  Google Scholar 

  136. Alfaki, M. and Haugland, D., J. Global Optim., 2013, vol. 56, p. 897.

    Article  Google Scholar 

  137. Kolodziej, S., Castro, P.M., and Grossmann, I.E., J. Global Optim., 2013, vol. 57, p. 1039.

    Article  Google Scholar 

  138. Midthun, K.T., Mette, B., and Tomasgard, A., Energy J., 2009, vol. 30, p. 155.

    Article  Google Scholar 

  139. Kall, P. and Wallace, S.W., Stochastic Programming, Chichester: Wiley, 1994.

    Google Scholar 

  140. Ferris, M.C., Dirkse, S.P., Jaglac, J.H., and Meeraus, A., Comput. Chem. Eng., 2009, vol. 33, p. 1973.

    Article  CAS  Google Scholar 

  141. Report No. A/68/970 of the Open Working Group of the General Assembly on Sustainable Development Goals, New York: United Nations, 2014.

  142. Khair, N.K.M., Lee, K.E., Mokhtar, M., and Goh, C.T., J. Chem. Health Saf., 2018, vol. 25, p. 10. https://doi.org/10.1016/j.jchas.2018.02.003

    Article  Google Scholar 

  143. Krantzberg, G. and Theriault, S., Int. J. Sci., 2017, vol. 6, p. 55. https://doi.org/10.18483/ijSci.1324

    Article  Google Scholar 

  144. Finger, S.R. and Gamper-Rabindran, S., SSRN Electron. J., 2012. https://doi.org/10.2139/ssrn.2014386

  145. Makarova, A., Tarasova, N., Meshalkin, V., Kukushkin, I., Kudryavtseva, E., Kantyukov, R., and Reshetova, E., Int. J. Qual. Res., 2018, vol. 12, p. 43. https://doi.org/10.18421/IJQR12.01-03

    Article  Google Scholar 

  146. Makarova, A., Meshalkin, V., Klemes, J., Kudryavtseva, E., and Bulatov, I., Chem. Eng. Trans., 2017, vol. 61, p. 1477. https://doi.org/10.3303/CET1761244

    Article  Google Scholar 

  147. Hagemann, S., Technologies for the Stabilization of Elemental Mercury and Mercury-Containing Wastes: Final Report No. 252, Nairobi: UNEP, 2009. ISBN 978-3-939355-27-4

  148. Dedov, A.G., Ivanova, E.A., Sandzhieva, D.A., Lobakova, E.S., Kashcheeva, P.B., Kirpichnikov, M.P., Ishkov, A.G., and Buznik, V.M., Theor. Found. Chem. Eng., 2017, vol. 51, p. 617. https://doi.org/10.1134/S0040579517040042

    Article  CAS  Google Scholar 

  149. Meshalkin, V.P., Ostakh, S.V., and Kusheev, V.S., Chem. Eng. Trans., 2020, vol. 82, p. 403. https://doi.org/10.3303/CET2082068

    Article  Google Scholar 

  150. Ivanova, E.A., Lobakova, E.S., Idiatulov, R.K., Shapiro, T.N., Sandzhieva, D.A., Kuznetsova, O.V., Zaitseva, Y.N., Dzhabrailova, K.S., and Dedov, A.G., Petrol. Chem., 2019, vol. 59, p. 420. https://doi.org/10.1134/S096554411904008X

    Article  CAS  Google Scholar 

  151. Butusov, O.B. and Meshalkin, V.P., Theor. Found. Chem. Eng., 2008, vol. 42, p. 85. https://doi.org/10.1134/S0040579508010119

    Article  CAS  Google Scholar 

  152. Yuan, J. and Elektorowicz, M., Adv. Eng. Software, 2013, vol. 55, p. 56.

    Article  Google Scholar 

  153. Ghaisari, J., Vatani, M., and Jannesari, H., Adv. Eng. Software, 2012, vol. 45, p. 91.

    Article  Google Scholar 

  154. Guo, F., Zou, F., Liu, J., and Wang, Z., Int. J. Adv. Manuf. Technol., 2018, vol. 98, p. 1547. https://doi.org/10.1007/s00170-018-2048-0

    Article  Google Scholar 

  155. Russell, S.J. and Norvig, P., Artificial Intelligence: A Modern Approach, 3rd ed., Boston: Pearson, 2010, p. 1132.

    Google Scholar 

  156. Kim, H. and Han, S., Multimedia Tools Appl., 2018, vol. 77, no. 20, p. 27387.

    Article  Google Scholar 

  157. Meshalkin, V.P., Stoyanova, O.V., and Dli, M.I., Theor. Found. Chem. Eng., 2012, vol. 46(1), p. 50. https://doi.org/10.1134/S0040579512010101

    Article  CAS  Google Scholar 

  158. Meshalkin, V.P., Bol’shakov, A.A., Krainov, O.A., and Petrov, D.Y., Theor. Found. Chem. Eng., 2012, vol. 46(3), p. 284.

    Article  CAS  Google Scholar 

  159. Meshalkin, V.P. and Moshev, E.R., J. Mach. Manuf. Reliab., 2015, vol. 44, p. 580. https://doi.org/10.3103/S1052618815070109

    Article  Google Scholar 

  160. Moshev, E.R. and Meshalkin, V.P., Theor. Found. Chem. Eng., 2014, vol. 48, p. 855. https://doi.org/10.1134/S0040579514060074

    Article  CAS  Google Scholar 

  161. Moshev, E.R. and Romashkin, M.A., Chem. Petrol. Eng., 2014, vol. 49, p. 679. https://doi.org/10.1007/s10556-014-9818-9

    Article  Google Scholar 

  162. Shcherbakov, M., Groumpos, P.P., and Kravets, A.G. A method and IR4I index indicating the readiness of business processes for data science solutions, Commun. Comput. Inf. Sci., 2017, vol. 754, p. 21–34.

    Google Scholar 

  163. Kizim, A.V. and Kravets, A.G., On systemological approach to intelligent decision-making support in industrial cyber-physical systems, Stud. Syst. Decis. Control, 2020, vol. 260, p. 167–83.

    Article  Google Scholar 

  164. Dascalu, M.-I., Lazarou, E., and Constantin, V.F., Technology model to support the initiation of innovation artifacts, Commun. Comput. Inf. Sci., 2019, vol. 1083, p. 278–287.

    Google Scholar 

  165. Kohlert, M. and König, A., Front. Artif. Intell. Appl., 2012, vol. 243, p. 1953. https://doi.org/10.3233/978-1-61499-105-2-1953

    Article  Google Scholar 

  166. Kohlert, M. and Hissmann, O., Kunststoffe Int., 2015, nos. 6–7, p. 60.

  167. Chistyakova, T.B., Razygrayev, A.S., Makaruk, R.V., and Kohlert, C., in Proc. 19th Int. Conf. on Soft Computing and Measurements, St. Petersburg: Inst. Electr. Electron. Eng., 2016, p. 257. https://doi.org/10.1109/SCM.2016.7519746

  168. Chistyakova, T.B. and Polosin, A.N., Vestn. Yuzh.-Ural. Gos. Univ., Ser. Matem. Model. Program., 2019, vol. 12, no. 4, 5. (in Russian).https://doi.org/10.14529/mmp190401

    Article  Google Scholar 

  169. Meshalkin, V.P., Ekspertnye sistemy v khimicheskoi tekhnologii (Expert Systems in Chemical Technology), Moscow: Khimiya, 1993.

  170. Petrov, D., Software for integrated modeling of industrial safety, Proc. Virtual Int. Conf. on “Natural Disasters and their Early Warning Systems (NEWS) 2020,” July 8–9, 2020, Vellore: Centre Disaster Mitigation Manage., Vellore Inst. Technol., 2020.

  171. Digital twin, Siemens Company. https://www.plm.automation.siemens.com/global/ru/our-story/glossary/digital-twin/24465. Accessed January 21, 2021.

  172. Stauffer, T., Sands, N., and Dunn, D., Alarm management and ISA-18—a journey, not a destination, Proc. 2000 Texas A&M Instrumentation Symp. for the Process Industries, College Station, TX, 2000. https://www.researchgate.net/figure/Safety-layers-of-protection-from-Stauffer-et-al-2000_fig1_319453633. Accessed January 22, 2021.

  173. Meshalkin, V.P., Bol’shakov, A.A., Petrov, D.Y., and Krainov, O.A., Theor. Found. Chem. Eng., 2012, vol. 46, p. 284. https://springer.longhoe.net/article/10.1134/S0040579512030062

    Article  CAS  Google Scholar 

  174. Meshalkin, V.P. and Petrov, D.Y., Theor. Found. Chem. Eng., 2014, vol. 48, p. 301. https://springer.longhoe.net/article/10.1134/S0040579514030129

    Article  CAS  Google Scholar 

  175. Vasquez Capacho, J.W., Mayorga, M.A., Cortez, A., and Bustos, A., Techniques for alarm management with fault diagnostic system in startups and shutdowns for industrial processes, Tecciencia, 2014, vol. 9, no. 16. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-36672014000100002 1/17. Accessed January 22, 2021.

  176. Gruhn, G., Kafarov, V.V., Meshalkin, V.P., and Neumann, W., Zuverlaessigkeit von Chemieanlagen, Leipzig: Dtsch. Verlag Grundstoffind., 1979.

    Google Scholar 

  177. Roy, A., Srivastava, P., and Sinha, S., Rev. Chem. Eng., 2014, vol. 30, p. 479. https://doi.org/10.1515/revce-2013-0043

    Article  Google Scholar 

  178. Egorov, A.F. and Savitskaya, T.V., Theor. Found. Chem. Eng., 2010, vol. 44, p. 326. https://doi.org/10.1134/S0040579510030127

    Article  CAS  Google Scholar 

  179. Sarkisov, P.D., Egorov, A.F., Savitskaya, T.V., Bachkala, O.V., and Kuz’mina, Y.A., Theor. Found. Chem. Eng., 2013, vol. 47, p. 22. https://doi.org/10.1134/S0040579513010119

    Article  CAS  Google Scholar 

  180. Berman, A.F. and Nikolaychuk, O.A., IOP Conf. Ser.: Mater. Sci. Eng., 2020, p. 5. https://doi.org/10.1088/1757-899X/919/5/052015

  181. Berman, A.F., Nikolaichuk, O.A., Yurin, A.Yu., and Pavlov, A.I., Inf. Matem. Tekhnol. Nauke Upr., 2019, vol. 2, p. 5. https://doi.org/10.25729/2413-0133-2019-2-01

    Article  Google Scholar 

  182. Nauchno-pedagogicheskei shkoly Mendeleevskogo universiteta (Scientific-Pedagogical Schools of the Mendeleev University of Chemical Technology), Kolesnikov, V.A., Ed., Moscow, 2008.

    Google Scholar 

  183. Decision of the XXI Mendeleev Congress on General and Applied Chemistry. https://drive.google.com/file/d/0BzUEvDRocc-HeQzhST1JtQ2ROUmNHSENEZ1VjcVZUWkdiM25v/view. Accessed January 21, 2021.

  184. Kozlov, G.V., Garabadzhiu, A.V., Sokolov, V.N., Ginak, A.I., Kochetkov, V.V., and Osledkin, Yu.S., Microbial destruction of polycyclic aromatic hydrocarbons in wood, Biotekhnologiya, 1999, no. 4, p. 63–67.

  185. Kozlov, G., Pushkarev, M., and Mokhna, V., Phenatrene biodestructors isolated from soils of large cities, E3S Web Conf., 2019, vol. 135, art. ID 01052. https://doi.org/10.1051/e3sconf/201913501052

Download references

ACKNOWLEDGMENTS

I thank Assoc. Prof. S.M. Khodchenko and Ya.P. Baranova, a master student at the Department of Logistics and Economic Informatics, Mendeleev University of Chemical Technology of Russia , for significant technical assistance in writing this review.

I am also deeply grateful to my colleagues for taking part in the search for original published materials in writing this analytical review, namely, Prof. E.G. Vinokurov, Dr. Sci. (Chem.); Prof. O.B. Butusov, Dr. Sci (Phys. and Math.); Prof. V.I. Bobkov, Dr. Sci. (Tech.); Prof. N.T. Berberova, Dr. Sci. (Chem.); Prof. A.V. Garabadzhiu, Dr. Sci. (Tech.); Prof. M.I. Dli, Dr. Sci. (Tech.); K.L. Zanaveskin, Senior Research Associate, Cand. Sci. (Tech.); Prof. A.G. Kravets, Dr. Sci. (Tech.); Prof. A.S. Makarova, Dr. Sci. (Tech.); Prof. E.R. Moshev, Dr. Sci. (Tech.); Assoc. Prof. S.V. Ostakh, Cand. Sci. (Tech.); Assoc. Prof. D.Yu. Petrov, Cand. Sci. (Tech.); Prof. T.B. Chistyakova, Dr. Sci. (Tech.); Assoc. Prof. S.M. Khodchenko; and Prof. A.I. Shulaev, Dr. Sci. (Tech.).

Funding

This study was supported by the Russian Science Foundation (project no. 21-79-30029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Meshalkin.

Additional information

Translated by O. Kadkin

Special Issue Dedicated to the Jubilee of Academician of the RAS Valery P. Meshalkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshalkin, V.P. Current Theoretical and Applied Research on Energy- and Resource-Saving Highly Reliable Chemical Process Systems Engineering. Theor Found Chem Eng 55, 563–587 (2021). https://doi.org/10.1134/S004057952104031X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952104031X

Keywords:

Navigation