Log in

On an alternative stratification of knots

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce an alternative stratification of knots: by the size of the lattice on which a knot can be first met. Using this classification, we find the fraction of unknots and knots with more than \(10\) minimal crossings inside different lattices and answer the question of which knots can be realized inside \(3\times 3\) and \(5\times 5\) lattices. In accordance with previous research, the fraction of unknots decreases exponentially with the growth of the lattice size. Our computational results are consistent with theoretical estimates for the number of knots with a fixed crossing number inside lattices of a given size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. E. Guadagnini, M. Martellini, and M. Mintchev, “Chern–Simons holonomies and the appearance of quantum groups,” Phys. Lett. B, 235, 275–281 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. N. Yu. Reshetikhin and V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups,” Commun. Math. Phys., 127, 1–26 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Morozov and A. Smirnov, “Chern–Simons teory in the temporal gauge and knot invariants through the universal quantum \(R\)-matrix,” Nucl. Phys. B, 835, 284–313 (2010); ar**v: 1001.2003.

    Article  ADS  MATH  Google Scholar 

  4. R. K. Kaul and T. R. Govindarajan, “Three-dimensional Chern–Simons theory as a theory of knots and links,” Nucl. Phys. B, 380, 293–333 (1992); ar**v: hep-th/9111063.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. P. Rama Devi, T. R. Govindarajan, and R. K. Kaul, “Three-dimensional Chern–Simons theory as a theory of knots and links. (III). Compact semi-simple group,” Nucl. Phys. B, 402, 548–566 (1993); ar**v: hep-th/9212110; “Knot invariants from rational conformal field theories,” Nucl. Phys. B, 422, 291–306 (1994); ar**v: hep-th/9312215.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. P. Ramadevi and T. Sarkar, “On link invariants and topological string amplitudes,” Nucl. Phys. B, 600, 487–511 (2001); ar**v: hep-th/0009188.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zodinmawia and P. Ramadevi, “\(SU(N)\) quantum Racah coefficients and non-torus links,” Nucl. Phys. B, 870, 205–242 (2013); ar**v: 1107.3918; “Reformulated invariants for non-torus knots and links,” ar**v: 1209.1346.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. Nawata, P. Ramadevi, and Zodinmawia, “Colored Kauffman homology and Super-A-polynomials,” JHEP, 01, 126, 69 pp. (2014); ar**v: 1310.2240.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. Gu and H. Jockers, “A note on colored HOMFLY polynomials for hyperbolic knots from WZW models,” Commun. Math. Phys., 338, 393–456 (2015); ar**v: 1407.5643.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D. Sho, “Exchange relation in \(sl_3\) WZNW model in semiclassical limit,” ar**v: 1408.2212.

  11. A. Mironov, A. Morozov, and And. Morozov, “Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid,” JHEP, 03, 034, 33 pp. (2012); ar**v: 1112.2654.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. Itoyama, A. Mironov, A. Morozov, and And. Morozov, “Character expansion for HOMFLY polynomials III: All 3-strand braids in the first symmetric representation,” Internat. J. Modern Phys. A, 27, 1250009, 85 pp. (2012); “Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations,” 28, 1340009, 81 pp. (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Anokhina, A. Mironov, A. Morozov, and And. Morozov, “Colored HOMFLY polynomials as multiple sums over paths or standard Young tableaux,” Adv. High Energy Phys., 2013, 931830, 12 pp. (2013).

    MathSciNet  MATH  Google Scholar 

  14. A. S. Anokhina and A. A. Morozov, “Cabling procedure for the colored HOMFLY polynomials,” Theoret. and Math. Phys., 178, 1–58 (2014); ar**v: 1307.2216.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, “Chirality of knots \(9_{42}\) and \(10_{71}\) and Chern–Simons theory,” Modern Phys. Lett. A, 9, 3205–3217 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. Nawata, P. Ramadevi, and Zodinmawia, “Colored HOMFLY polynomials from Chern–Simons theory,” J. Knot Theory Ramifications, 22, 1350078, 58 pp. (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, and A. Sleptsov, “Colored knot polynomials for arbitrary pretzel knots and links,” Phys. Lett. B, 743, 71–74 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, and A. Sleptsov, “Knot invariants from Virasoro related representation and pretzel knots,” Nucl. Phys. B, 899, 194–228 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Mironov, A. Morozov, and A. Sleptsov, “Colored HOMFLY polynomials for the pretzel knots and links,” JHEP, 07, 069, 34 pp. (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. C. Even-Zohar, J. Hass, N. Linial, and T. Nowik, “Universal knot diagrams,” J. Knot Theory Ramifications, 28, 1950031, 30 pp. (2019).

    Article  MathSciNet  MATH  Google Scholar 

  21. The Knot Atlas, http://katlas.org.

  22. Yu. S. Belousov and A. V. Malyutin, “Hyperbolic knots are not generic,” ar**v: 1908.06187.

  23. C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, Freeman, New York (1994).

    MATH  Google Scholar 

  24. C. Ernst and D. W. Sumners, “The growth of the number of prime knots,” Math. Proc. Cambridge Philos. Soc., 102, 303–315 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras,” Bull. Amer. Math. Soc. (N. S.), 12, 103–111 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. G. Turaev, “The Yang–Baxter equation and invariants of links,” in: New Developments in the Theory of Knots (Advanced Series in Mathematical Physics, Vol. 11, T. Kohno, ed.), 1990, pp. 175–201.

    Chapter  Google Scholar 

  27. V. F. R. Jones, “On knot invariants related to some statistical mechanical models,” Pacific J. Math., 137, 311–334 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  28. R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc., London (1982).

    MATH  Google Scholar 

  29. H. E. Lieb and F. Y. Wu, “Two-dimensional ferroelectric models,” in: Phase Transitions and Critical Phenomena, Vol. 11 (C. Domb and M. S. Green), Academic Press, London (1972), pp. 331–490.

    Google Scholar 

  30. A. Grosberg and S. Nechaev, “Algebraic invariants of knots and disordered Potts model,” J. Phys. A, 25, 4659–4672 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. Nechaev, “Statistics of knots and entangled random walks,” in: Aspects topologiques de la physique en basse dimension/ Topological Aspects of Low Dimensional Systems (NATO Advanced Study Institute, Grenoble, France, Les Houches, Session LXIX, 7–31 July, 1998, Les Houches – Ecole d’Ete de Physique Theorique (LHSUMMER), Vol. 69, A. Comtet, T. Jolicoeur, S. Ouvry, and F. David, eds.), Springer, Berlin (1999), pp. 643–733.

    Chapter  Google Scholar 

  32. M. Khovanov, “A categorification of the Jones polynomial,” Duke Math. J., 101, 359–426 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Bar-Natan, “On Khovanov’s categorification of the Jones polynomial,” Algebr. Geom. Topol., 2, 337–370 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  34. KnotInfo: Table of Knots, https://knotinfo.math.indiana.edu.

  35. P. B. Kronheimer and T. S. Mrowka, “Khovanov homology is an unknot-detector,” Publ. Math. IHES, 113, 97–208 (2011).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank A. Malyutin and Yu. Belousov for the useful discussions.

Funding

This work was funded by a grant of the Leonard Euler International Mathematical Institute in Saint Petersburg No. 075-15-2019-1619 (E. L., N. T.), by grants of the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (E. L., N. T.), by the RFBR grant 20-01-00644 (N. T., A. P.), by the joint RFBR and TUBITAK grant 21-51-46010-CT_a (N. T.) and by the joint RFBR and MOST grant 21-52-52004_MHT (A. P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Lanina.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 20–35 https://doi.org/10.4213/tmf10491.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanina, E.N., Popolitov, A.V. & Tselousov, N.S. On an alternative stratification of knots. Theor Math Phys 216, 924–937 (2023). https://doi.org/10.1134/S0040577923070024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923070024

Keywords

Navigation