Log in

Derivation of Residual Thermal Properties from Cubic Equations of State when the Discriminant of Quadratic Term Changes Sign with Temperature

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A cubic equation of state (EOS) always contains a quadratic term, or a quadratic term and a cubic term, where the quadratic term may contain temperature dependent parameters(s). Therefore, the discriminant (Δ) of quadratic term may change sign in the variation of temperature. If so, the functional forms of the residual thermal properties (such as residual internal energy, enthalpy, entropy, isochoric and isobaric heat capacity) derived from the EOS will change accordingly. When Δ = 0, the quadratic term degenerates into a perfect square of volume, which can be used to derive fugacity coefficient, residual Gibbs and Helmholtz free energy, but cannot give correct residual thermal properties. To solve this problem, non-degenerate transformation of quadratic fraction must be used. When Δ < 0, the residual thermal properties are derived by the method of undetermined coefficients or integration by parts. For the sake of generality, the general form of cubic equations of state is used to derive residual thermal properties according to the sign of Δ. The derivation starts from residual internal energy and fugacity coefficient, and then extends to other residual properties. These results and approaches can be used in the efforts to improve the accuracy of the cubic EOS, or to extend cubic EOS to the supercritical region that is very far from the critical points of pure fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

RERFERECES

  1. P. M. Salim and M. A. Trebble, Fluid Phase Equilib. 65, 59 (1991).

    Article  CAS  Google Scholar 

  2. K. H. Kumar and K. E. Starling, Ind. Eng. Chem. Fundam. 21, 255 (1982).

    Article  CAS  Google Scholar 

  3. A. Dashtizadeh, G. R. Pazuki, V. Taghikhani, and C. Ghotbi, Fluid Phase Equilib. 242, 19 (2006).

    Article  CAS  Google Scholar 

  4. K. Nasrifar and M. Moshfeghian, Fluid Phase Equilib. 190, 73 (2001).

    Article  CAS  Google Scholar 

  5. A. Haghtalab, M. J. Kamali, S. H. Mazloumi, and P. Mahmoodi, Fluid Phase Equilib. 293, 209 (2010).

    Article  CAS  Google Scholar 

  6. P. N. P. Ghoderao, V. H. Dalvi, and M. Narayan, Chin. J. Chem. Eng. 27, 1132 (2018).

    Article  Google Scholar 

  7. P. N. P. Ghoderao, V. H. Dalvi, and M. Narayan, Chem. Eng. Sci. 190, 173 (2018).

    Article  CAS  Google Scholar 

  8. P. N. P. Ghoderao, V. H. Dalvi, and M. Narayan, Chem. Eng. Sci. X 3, 100026 (2019).

  9. K. Nasrifar, Int. J. Hydrogen Energy 35, 3802 (2010).

    Article  CAS  Google Scholar 

  10. M. Ghanbari, M. Ahmadi, and A. Lashanizadegan, Cryogenics 84, 13 (2017).

    Article  CAS  Google Scholar 

  11. F. F. Yang, A. Liu, Y. Y. Duan, and Z. Yang, Chem. Eng. Sci. 192, 565 (2018).

    Article  CAS  Google Scholar 

  12. P. Hosseinifar and S. Jamshidi, Fluid Phase Equilib. 408, 58 (2016).

    Article  CAS  Google Scholar 

  13. E. Neau, I. Raspo, J. Escandell, C. Nicolas, and O. Hernández-Garduza, Fluid Phase Equilib. 276, 156 (2009).

    Article  CAS  Google Scholar 

  14. W. R. Ji and D. A. Lempe, Fluid Phase Equilib. 147, 85 (1998).

    Article  CAS  Google Scholar 

  15. A. Anderko, in Equations of State for Fluids and Fluid Mixtures, Ed. by J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. J. White (Elsevier, Amsterdam, 2000), p. 75.

    Google Scholar 

  16. J. O. Valderrama, Ind. Eng. Chem. Res. 42, 1603 (2003).

    Article  CAS  Google Scholar 

  17. F. Abdollahi-Demneh, M. A. Moosavian, M. M. Montazer-Rahmati, M. R. Omidkhah, and H. Bahmaniar, Fluid Phase Equilib. 291, 48 (2010).

    Article  CAS  Google Scholar 

  18. F. Abdollahi-Demneh, M. A. Moosavian, M. M. Montazer-Rahmati, M. R. Omidkhah, and H. Bahmaniar, Fluid Phase Equilib. 288, 67 (2010).

    Article  CAS  Google Scholar 

  19. J. S. Lopez-Echeverry, S. Reif-Acherman, and E. Araujo-Lopez, Fluid Phase Equilib. 447, 39 (2017).

    Article  CAS  Google Scholar 

  20. M. Cismondi and J. Mollerup, Fluid Phase Equilib. 232, 74 (2005).

    Article  CAS  Google Scholar 

  21. P. Hosseinifar and S. Jamshidi, Fluid Phase Equilib. 408, 58 (2016).

    Article  CAS  Google Scholar 

  22. K. Nasrifar and O. Bolland, J. Petrol. Sci. Eng. 51, 253 (2006).

    Article  CAS  Google Scholar 

  23. E. Neau, O. Hernández-Garduza, J. Escandell, C.  Nicolas, and I. Raspo, Fluid Phase Equilib. 276, 87 (2009).

    Article  CAS  Google Scholar 

  24. R. Privat, M. Visconte, A. Zazoua-Khames, J. N. Jaubert, and R. Gani, Chem. Eng. Sci. 126, 584 (2015).

    Article  CAS  Google Scholar 

  25. K. H. Kumar and K. E. Starling, Ind. Eng. Chem. Fundam. 79, 128 (1980).

    Article  Google Scholar 

  26. T. Ishikawa, W. K. Chung, and C. C. Y. Lu, AIChE J. 26, 372 (1980).

    Article  CAS  Google Scholar 

  27. G. G. Fuller, Ind. Eng. Chem. Fundam. 15, 254 (1976).

    Article  CAS  Google Scholar 

  28. G. Heyen, in Chemical Engineering Thermodynamics, Ed. by S. A. Newman (Ann Arbor Science, Ann Arbor, Michigan, 1983), p. 175.

    Google Scholar 

  29. M. Mohsen-Nia, H. Modarress, and G. A. Mansoori, Fluid Phase Equilib. 206, 27 (2003).

    Article  CAS  Google Scholar 

  30. A. H. Farrokh-Niae, H. Moddarress, and M. Mohsen-Nia, J. Chem. Thermodyn. 40, 84 (2008).

    Article  CAS  Google Scholar 

  31. A. Aasen, M. Hammer, S. Lasala, J. N. Jaubert, and Ø. Wilhelmsen, Fluid Phase Equilib. 524, 112790 (2020).

  32. M. A. Trebble and P. R. Bishnoi, Fluid Phase Equilib. 35, 1 (1987).

    Article  CAS  Google Scholar 

  33. J. X. Sun, Fluid Phase Equilib. 193, 1 (2002).

    Article  CAS  Google Scholar 

  34. P. Watson, M. Cascella, D. May, S. Salerno, and D. Tassios, Fluid Phase Equilib. 27, 35 (1986).

    Article  CAS  Google Scholar 

  35. O. Chiavone-Filho, E. L. Foletto, and L. R. Terron, Ing. Invest. 34, 26 (2014).

    Article  Google Scholar 

  36. K. Magoulas and D. Tassios, Fluid Phase Equilib. 56, 119 (1990).

    Article  CAS  Google Scholar 

  37. W. R. Ji and D. A. Lempe, Fluid Phase Equilib. 130, 49 (1997).

    Article  CAS  Google Scholar 

  38. J. C. Tsai and Y. P. Chen, Fluid Phase Equilib. 145, 193 (1998).

    Article  CAS  Google Scholar 

  39. H. M. Lin and Y. Y. Duan, Fluid Phase Equilib. 233, 194 (2005).

    Article  CAS  Google Scholar 

  40. J. Ahlers and J. Gmehling, Fluid Phase Equilib. 191, 177 (2001).

    Article  CAS  Google Scholar 

  41. J. L. Shi, H. Z. A. Li, and W. Y. Pang, Fluid Phase Equilib. 470, 164 (2018).

    Article  CAS  Google Scholar 

  42. H. M. Lin, H. Kim, T. M. Guo, and K. C. Chao, Fluid Phase Equilib. 13, 143 (1983).

    Article  CAS  Google Scholar 

  43. T. Guo, J. W. Hu, Y. Z. Wang, L. H. **, and X. H. Wang, Acta Petrol. Sin. 32, 2196 (2016).

    Google Scholar 

  44. J. Z. Chu, Y. X. Zuo, and T. M. Guo, Fluid Phase Equilib. 77, 181 (1992).

    Article  CAS  Google Scholar 

  45. Y. Adachi, H. Sugie, and B. C. Y. Lu, Fluid Phase Equilib. 28, 119 (1986).

    Article  CAS  Google Scholar 

  46. S. Y. Jiang, T. Guo, Y. X. Yu, and J. W. Hu, Int. J. Thermophys. 43, 22 (2022).

    Article  CAS  Google Scholar 

  47. S. Y. Jiang, T. Guo, and J. W. Hu, Geochimica 51, 344 (2022).

    CAS  Google Scholar 

  48. J. R. Holloway, in Thermodynamics in Geology, Ed. by D. G. Fraser (D. Reidel, Dordrecht, Holland, 1977), p. 161.

    Google Scholar 

  49. T. S. Bowers and H. C. Helgeson, Geochim. Cosmochim. Acta 47, 1247 (1983).

    Article  CAS  Google Scholar 

  50. R. J. Bakker, Chem. Geol. 154, 225 (1999).

    Article  CAS  Google Scholar 

  51. G. Soave, Chem. Eng. Sci. 27, 1197 (1972).

    Article  CAS  Google Scholar 

  52. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976).

    Article  CAS  Google Scholar 

  53. N. C. Patel and A. S. Teja, Chem. Eng. Sci. 37, 463 (1982).

    Article  CAS  Google Scholar 

  54. J. D. van der Waals, Ph. D. Thesis (Leiden Univ., Netherlands, 1873).

  55. R. Clausius, Ann. Phys. Chem. 245, 337 (1880).

    Article  Google Scholar 

  56. J. J. Martin, Ind. Eng. Chem. Fundam. 18, 81 (1979).

    Article  CAS  Google Scholar 

  57. F. L. Roman, A. Mulero, and F. Cuadros, Phys. Chem. Chem. Phys. 6, 5402 (2004).

    Article  CAS  Google Scholar 

  58. I. Polishuk, Ind. Eng. Chem. Res. 48, 10708 (2009).

    Article  CAS  Google Scholar 

  59. W. Wagner and A. Pruss, J. Phys. Chem. Ref. Data 31, 387 (2002).

    Article  CAS  Google Scholar 

  60. R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000).

    Article  CAS  Google Scholar 

  61. C. J. Kedge and M. A. Trebble, Fluid Phase Equilib. 194–197, 401 (2002).

    Article  Google Scholar 

  62. C. J. Kedge and M. A. Trebble, Fluid Phase Equilib. 217, 257 (2004).

    Article  CAS  Google Scholar 

  63. G. Q. Du and J. W. Hu, Int. J. Greenhouse Gas Contr. 49, 94 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Hebei Province (grant no. D2018403089) and the Key Project of Scientific and Technologic Research of Hebei Provincial Universities (grant no. ZD2018026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Hu.

Ethics declarations

The author declares that he has no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J.W. Derivation of Residual Thermal Properties from Cubic Equations of State when the Discriminant of Quadratic Term Changes Sign with Temperature. Russ. J. Phys. Chem. 97, 2395–2404 (2023). https://doi.org/10.1134/S0036024423110122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110122

Keywords:

Navigation