Log in

Ag(I)-Promoted Substitution of Cyanide from Hexacyanoferrate(II) with Pyrazine: A Kinetic and Mechanistic Study

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetic spectrophotometric study of Ag(I)-promoted production of [Fe(CN)5PZA]3– was performed by monitoring the absorbance at 440 nm, the λmax of yellow-colored complex [Fe(CN)5PZA]3–. The formation of [Fe(CN)5PZA]3– proceeds via the Ag(I) catalyzed substitution of cyanide from [Fe(CN)6]4– with chromogenic ligand pyrazine (PZA). Pseudo-first-order conditions were used to study the reaction rate as a function of ionic strength, [Ag+], [PZA], temperature, pH, and [Fe(CN)64−] by varying one parameter at a time. According to the effect of reaction parameters on the initial rate, it was found that [Ag+] and pH strongly affect the reaction rate. The reaction displays variable order kinetics with [Fe(CN)\(_{6}^{{4 - }}\)] and [PZA] in the studied concentration ranges. Inverse trend in the initial rate with ionic strength exhibits a negative salt effect. An interchange dissociative (Id) mechanistic scheme as predicted by us was also strengthened by the large negative entropy of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. O. Omondi, S. O. Ojwach, and D. Jaganyi, Inorg. Chim. Acta 512, 119883 (2020).

    Article  CAS  Google Scholar 

  2. R. M. Naik, A. Srivastava, and A. Asthana, J. Iran. Chem. Soc. 5, 29 (2008).

    Article  CAS  Google Scholar 

  3. D. Nandi, P. Karmaker, S. Ray, A. Chattopadhyay, R. Sarkar, and A. K. Ghosh, Inorg. Nano-Met. Chem. 18, 16 (2018).

    Google Scholar 

  4. T. Iioka, S. Takahashi, Y. Yoshida, Y. Matsumura, S. Hiraoka, and H. Sato, J. Comput. Chem. 40, 279 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. R. M. Naik, A. Srivastava, A. K. Verma, S. B. S. Yadav, R. Singh, and S. Prasad, Bioinorg. Reac. Mech. 6, 185 (2007).

    CAS  Google Scholar 

  6. G. P. Pandey, A. K. Singh, S. Prasad, L. Deshmukh, A. Asthana, S. B. Mathew, and M. Yoshida, Microchem. J. 128, 55 (2016).

    Article  CAS  Google Scholar 

  7. A. M. El-Didamony, M. Z. Saad, and N. O. Saleem, J. Chil. Chem. Soc. 58, 1907 (2013).

    Article  CAS  Google Scholar 

  8. A. Srivastava, V. Sharma, A. Prajapati, N. Srivastava, and R. M. Naik, Chem. Chem. Technol. 13, 275 (2019).

    Article  CAS  Google Scholar 

  9. S. Prasad, R. M. Naik, and A. Srivastava, Spectrochim. Acta, Part A 70, 958 (2008).

    Article  Google Scholar 

  10. B. R. Reddy and S. Raman, Ind. J. Chem. A 28, 599 (1989).

    Google Scholar 

  11. S. Prasad, Trans. Met. Chem. 28, 1 (2003).

    Article  CAS  Google Scholar 

  12. K. S. Siddiqi, A. A. P. Khan, A. Modh, and S. Bano, Eur. J. Chem. 6, 103 (2009).

    Google Scholar 

  13. R. Rastogi, A. Srivastava, and R. M. Naik, J. Disp. Sci. Technol. 41, 1045 (2020).

    Article  CAS  Google Scholar 

  14. A. Srivastava, R. M. Naik, and R. Rastogi, J. Iran. Chem. Soc. 17, 2327 (2020).

    Article  Google Scholar 

  15. S. Prasad, Anal. Lett. 37, 2851 (2004).

    Article  CAS  Google Scholar 

  16. M. Reinhard, G. Auböck, N. A. Besley, I. P. Clark, G. M. Greetham, et al., J. Am. Chem. Soc. 139, 7335 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. V. Gaspar and M. T. Beck, Polyhedron 2, 387 (1983).

    Article  CAS  Google Scholar 

  18. A. M. March, G. Doumy, A. Andersen, H. A. Al, Y. Kumagai, M.-F. Tu, et al., J. Chem. Phys. 151, 144306 (2019).

    Article  PubMed  Google Scholar 

  19. R. M. Naik and B. Kumar, Prog. React. Kinet. Mech. 34, 147 (2012).

    Article  Google Scholar 

  20. A. M. Azzam and I. A. W. Shimi, Z. Anorg. Allgem. Chem. 321, 284 (1963).

    CAS  Google Scholar 

  21. A. Saito, Y. Migita, A. Yamaguchi, and T. Tsuru, Lett. 48, 104 (1997).

    CAS  Google Scholar 

  22. J. A. Maga, C. E. Sizer, and S. V. Myhre, CRC Crit. Rev. Food Technol. 4, 39 (1973).

    CAS  Google Scholar 

  23. M. E. Mason, J. Bobby, and H. Maynard, J. Agric. Food. Chem. 14, 454 (1966).

    Article  CAS  Google Scholar 

  24. J. García-Lomillo, M. L. González-San José, R. D. Pino-García, M. Ortega-Heras, and P. Muñiz-Rodríguez, J. Chem., 1056201 (2016).

  25. S. R. Patil, A. P. Sarkate, K. S. Karnik, A. Arsondkar, V. Patil, J. N. Sangshetti, A. S. Bobade, and D. B. Shinde, J. Heterocycl. Chem. 56, 859 (2019).

    Article  CAS  Google Scholar 

  26. Y. Li, X. Wei, S. Bai, Z. G. Xu, and M. Lv, J. Heterocycl. Chem. 56, 3429 (2019).

    Article  CAS  Google Scholar 

  27. W. L. Xu, L. Tao, L. Yan, Y. W. Hui, and Z. Y. Qing, Eur. J. Pharmacol. 881, 173211 (2020).

    Article  CAS  Google Scholar 

  28. Y. Seo, J. H. Lee, S. Park, W. Namkung, and I. Kim, Eur. J. Med. Chem. 188, 111988 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. P. B. Miniyar, S. N. Mokale, and S. J. Makhija, Arab. J. Chem. 10, 41 (2017).

    Article  CAS  Google Scholar 

  30. M. Ali, M. Ahmed, S. Hafiz, M. Kamal, M. Mumtaz, and S. A. Ayatollahi, Iran. J. Pharm. Res. 17, 93 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. F. Billes, J. Mol. Struct. 149, 289 (1986).

    Article  Google Scholar 

  32. H. Kamei, J. Phys. Chem. 69, 2791 (1965).

    Article  CAS  Google Scholar 

  33. M. Ali, Z. N. Lei, M. Ahmed, and D. H. Yang, J. Chem. Soc. Pakist. 40, 690 (2018).

    CAS  Google Scholar 

  34. S. Ramotowska, M. Wysocka, J. Brzeski, A. Chylewska, and M. Makowski, Trends Anal. Chem. 123, 115771 (2020).

    Article  CAS  Google Scholar 

  35. R. K. Chauhan, Int. J. Adv. Sci. Res. Manage. 3 (7), 129 (2018).

    Article  Google Scholar 

  36. V. Amani, A. S. Delbari, D. Sharafie, and M. Naresh, Res. Chem. Inter. 46, 2641 (2020).

    Article  CAS  Google Scholar 

  37. R. Chopra, K. Kansal, R. Kumar, and G. Singh, J. Fail. Anal. Preven. 18, 1411 (2018).

    Article  Google Scholar 

  38. I. B. Obot, I. B. Onyeachu, and S. A. Umoren, J. Biol. Tribol. Corros. 4, 18 (2018).

    Article  Google Scholar 

  39. H. Behzadi, P. Roonasi, M. J. Momeni, S. Manzetti, M. D. Esrafili, I. B. Obot, M. Yousefvand, and S. M. Mousavi-Khoshdel, J. Mol. Struct. 1086, 64 (2015).

    Article  CAS  Google Scholar 

  40. A. Karmakar, L. Martins, Y. Yahorava, F. M. C. Guedes da Silva, and J. L. P. Armando, Appl. Sci. 10, 2692 (2020).

    Article  CAS  Google Scholar 

  41. O. Rivada-Wheelaghan, A. Dauth, G. Leitus, Y. Diskin-Posner, and D. Milstein, Inorg. Chem. 54, 4526 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. P. L. Drake and K. J. Hazelwood, Ann. Occup. Hyg. 49, 575 (2005).

    CAS  PubMed  Google Scholar 

  43. N. Hadrup, A. K. Sharma, and K. Loeschner, Regul. Toxicol. Pharmacol. 98, 257 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. A. B. G. Lansdown, Adv. Pharmacol. Sci. 2010, 910686 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. R. M. Naik, R. K. Tiwari, P. K. Singh, S. B. S. Yadav, and A. Asthana, Trans. Met. Chem. 33, 615 (2008).

    Article  CAS  Google Scholar 

  46. R. M. Naik, R. K. Tiwari, P. K. Singh, and S. B. S. Yadav, Int. J. Chem. Kinet. 39, 447 (2007).

    Article  CAS  Google Scholar 

  47. K. Tang, Front. Mar. Sci. 7, 68 (2020).

    Article  Google Scholar 

  48. A. Srivastava, Biointerface Res. Appl. Chem. 10, 7152 (2020).

    CAS  Google Scholar 

  49. R. A. Bell and J. R. Kramer, Environ. Toxicol. Chem. 18, 9 (1999).

    CAS  Google Scholar 

  50. D. D. Marco, ISRN Inorg. Chem., 189394 (2013).

  51. H. H. Willard, L. L. Merritt, and J. A. Dean, Instrumental Method of Analysis, 4th ed. (Litton, New York, 1977).

    Google Scholar 

  52. W. A. Eaton, P. George, and G. I. J. Hanaria, J. Phys. Chem. 71, 2016 (1967).

    Article  CAS  PubMed  Google Scholar 

  53. D. D. Perrin and I. G. Sayee, Talanta 14, 833 (1967).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We did not receive any specific grant for this research from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhishek Srivastava or Radhey Mohan Naik.

Ethics declarations

CONFLICTS OF INTEREST

None of the authors has any potential or actual conflict of interest to disclose in relation to the published article.

AVAILABILITY OF DATA AND MATERIAL

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Naik, R.M., Rai, J. et al. Ag(I)-Promoted Substitution of Cyanide from Hexacyanoferrate(II) with Pyrazine: A Kinetic and Mechanistic Study. Russ. J. Phys. Chem. 95, 2545–2552 (2021). https://doi.org/10.1134/S0036024421130227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421130227

Keywords:

Navigation