Log in

Investigation of Kinetic and Isotherm Models for the Removal of Nitrate and Nitrite Ions on MNPs@PIL Adsorbent from Aqueous Solution

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In the previous work synthesis and characterization of magnetic nanoparticles modified with poly ionic liquid and its application in magnetic solid phase extraction of nitrate and nitrite was reported. In the present work, the kinetics of adsorption of nitrate and nitrite on the synthesized adsorbent was investigated by four kinetics models including pseudo first order, pseudo second order, Elovich and Intra particle diffusion models. The rate constants of all these models were calculated. The results showed that, the pseudo second order and the pseudo first order models were suitable to describe the adsorption kinetics of nitrate and nitrite, respectively. Also four isotherm models including Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich models were applied to find the best model which fitting the experimental data. The results showed that adsorption of both anions followed Langmuir isotherm model. Equilibrium parameters such as maximum adsorption capacity, adsorption constant and equilibrium concentration were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. Aflatouni and M. Soleimani, Chromatographia 81, 1475 (2018).

    Article  CAS  Google Scholar 

  2. M. Subbaiyan and P. B. Janardhan, J. Chem. Sci. 87, 199 (1978).

    Google Scholar 

  3. Q. H. Wang, L. J Yu, Y. Liu, L. Lin, R. G. Lu, J. P. Zhu, L. He, and Z. L. Lu, Talanta 165, 709 (2017).

    Article  CAS  Google Scholar 

  4. H. Qian, Z. Zhao, J. C. Velazquez, L. A. Pretzer, K. N. Heck, and M. S. Wong, Nanoscale 6, 358 (2014).

    Article  CAS  Google Scholar 

  5. Y. Lu, L. Xu, W. Shu, J. Zhou, X. Chen, Y. Xu, and G. Qian, Bioresour. Technol. 224, 34 (2017).

    Article  CAS  Google Scholar 

  6. F. Deganello, L. F. Liotta, A. Macaluso, A. M. Venezia, and G. Deganello, Appl. Catal. B: Environ. 24, 265 (2000).

    Article  CAS  Google Scholar 

  7. H. Yue, L. Xue, and F. Chen, Appl. Catal. B: Environ. 206, 683 (2017).

    Article  CAS  Google Scholar 

  8. H. Li and C. Yang, Sep. Sci. Technol. 50, 1721 (2015).

    Article  CAS  Google Scholar 

  9. M. Nujic, D. Milinkovic, and M. Habuda-Stanic, Croat. J. Food Sci. Technol. 9, 182 (2017).

    Article  Google Scholar 

  10. D. Wei, K. Zhang, H. H. Ngo, W. Guo, S. Wang, J. Li, F. Han, B. Du, and Q. Wei, Bioresour. Technol. 230, 49 (2017).

    Article  CAS  Google Scholar 

  11. Y. Zou, M. Lin, W. **ong, M. Wang, J. Zhang, M. Wang, and Y. Sun, Ecotoxicol. Environ. Safety 161, 85 (2018).

    Article  CAS  Google Scholar 

  12. F. Rossi, O. Motta, S. Matrella, A. Proto, and G. Vigliotta, Water 7, 51 (2015).

    Article  CAS  Google Scholar 

  13. M. M. Hamed, S. M. Yakout, and H. S. Hassan, J. Radioanal. Nucl. Chem. 295, 697 (2013).

    Article  CAS  Google Scholar 

  14. M. Zhang and J. Yang, X. Geng, Y. Li, Z. Zha, S. Cui, and J. Yang, J. Chromatogr. A 1598, 20 (2019).

    Article  CAS  Google Scholar 

  15. Y. S. Ho and G. McKay, Chem. Eng. J. 70, 115 (1998).

    Article  CAS  Google Scholar 

  16. P. N. Singh, D. Tiwary, and I. Sinha, J. Chem. Sci. 127, 1967 (2015).

    Article  CAS  Google Scholar 

  17. E. Demirbas, M. Kobya, E. Senturk, and T. Ozkan, Water SA 30, 533 (2004).

    Article  CAS  Google Scholar 

  18. B. Y. Z. Hiew, L. Y. Lee, K. C. Lai, S. Gan, S. Thangalazhy-Gopakumar, G. T. Pan, and T. C. K. Yang, Environ. Res. 168, 241 (2019).

    Article  CAS  Google Scholar 

  19. Z. Movasaghi, B. Yan, and C. Niu, Ind. Crop. Prod. 127, 237 (2019).

    Article  CAS  Google Scholar 

  20. Y. Sun, Q. Yue, B. Gao, B. Wang, Q. Li, L. Huang, and X. Xu, Chem. Eng. J. 192, 308 (2012).

    Article  CAS  Google Scholar 

  21. I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916).

    Article  CAS  Google Scholar 

  22. H. M. F. Freundlich, Z. Phys. Chem. 57, 385 (1906).

    CAS  Google Scholar 

  23. J. S. Piccin, G. L. Dotto, and L. A. A. Pinto, Braz. J. Chem. Eng. 28, 295 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Imam Khomeini international university research council for supporting the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateme Aflatouni.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of Interest

The authors acknowledge that there was no conflict of interest.

Statement on the Welfare of Humans or Animals

There was no human or animals test participants involved in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fateme Aflatouni, Soleimani, M. & Dargahi, M. Investigation of Kinetic and Isotherm Models for the Removal of Nitrate and Nitrite Ions on MNPs@PIL Adsorbent from Aqueous Solution. Russ. J. Phys. Chem. 94, 2829–2835 (2020). https://doi.org/10.1134/S0036024420130026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130026

Keywords:

Navigation