Log in

Separation/Competitive Transport of Heavy Metal Ions across the Bulk Liquid Membranes with N,N',N''-Tris(4-methylphenyl)phosphoric Triamide As Carrier

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The competitive bulk liquid membrane transport of seven metal ion by N,N',N''-tris(4-methylphen-yl)phosphoric triamide carrier was studied using a flame atomic absorption spectrometry. Dichloromethane (DCM), chloroform (CHCl3), nitrobenzene (NB) and 1,2-dichloroethane (1,2-DCE) solvents have been used as bulk liquid membranes (BLM). The carrier has been shown the maximum transport rate for Cu2+ cation in all of the BLM systems (except of 1,2-DCE) in comparison to the other cations containing Co2+, Cd2+, Ag+, Pb2+, Ni2+, Cu2+, and Zn2+. The obtained results show that the selectivity and efficiency of transport in presence of this ligand change with the type of organic solvents. Various factors that affect the transport efficiency of this heavy metal cations have been optimized in order to obtain maximum transport. The complexation process between phosphoric triamide and Cu2+cation have also been examined by conductomery method. The stoichiometry of the complex and the formation constant of phosphoric triamid-Cu2+ complex have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. D. Klaassen and M. O. Amdur, Casarett and Doull’s Toxicology: The Basic Science of Poisons (McGraw-Hill, New York, 1996), Vol. 5.

    Google Scholar 

  2. W. Bourgeois, J. E. Burgess, and R. M. Stuetz, J. Chem. Technol. Biotechnol 76, 337 (2001).

    Article  CAS  Google Scholar 

  3. B. Selvi and D. Mendil, Asian J. Chem. 21, 2807 (2009).

    CAS  Google Scholar 

  4. M. Ma et al., J. Membr. Sci. 234, 101 (2004).

    Article  CAS  Google Scholar 

  5. S. Pedersen-Bjergaard, K. E. Rasmussen, and T. G. Halvorsen, J. Chromatogr. A 902, 91 (2000).

    Article  CAS  Google Scholar 

  6. R. D. Noble and J. D. Way, Liquid Membranes: Theory and Applications (ACS Publ., 1987).

    Book  Google Scholar 

  7. R. Safaei and S. B. Howell, Crit. Rev. Oncol./Hematol. 53, 13 (2005).

    Article  Google Scholar 

  8. A. Frisch, Gaussian 09W Reference (Gaussian Inc., Wallingford, USA, 2009).

    Google Scholar 

  9. T. S. Cameron, M. G. Magee, and S. Mclean, Zeitschr. Naturforsch. B 31, 1295 (1976).

    Article  Google Scholar 

  10. S. Akbari, R. S. Khoshnood, and E. Hatami, Russ. J. Phys. Chem. A 91, 2569 (2017).

    Article  CAS  Google Scholar 

  11. A. Genplot, Data Analysis and Graphical Plotting Program for Scientist and Engineers (Computer Graphic Service, Ltd., Ithaca, NY, USA, 1989).

    Google Scholar 

  12. S. Y. Kazemi and M. Shamsipur, Separ. Purif. Technol. 17, 181 (1999).

    Article  CAS  Google Scholar 

  13. A. Nezhadali, M. Hakimi, and M. Heydari, J. Chem. 5, 52 (2008).

    Google Scholar 

  14. R. D. Hancock and A. E. Martell, Chem. Rev. 89, 1875 (1989).

    Article  CAS  Google Scholar 

  15. H. C. Visser, D. N. Reinhoudt, and F. de Jong, Chem. Soc. Rev. 23, 75 (1994).

    Article  CAS  Google Scholar 

  16. R. M. Izatt, K. Pawlak, J. S. Bradshaw, and R. L. Bruening, Chem. Rev. 95, 2529 (1995).

    Article  CAS  Google Scholar 

  17. M. Shen, Z. Wang, Q. Luo, X. Gao, and G. Liu, Acta Chim. Chin. Ed. 49, 718 (1991).

    CAS  Google Scholar 

  18. G. H. Rounaghi, A. Ghaemi, and M. Chamsaz, Arab. J. Chem. 9 (Suppl. 1), S490 (2016).

    Article  CAS  Google Scholar 

  19. R. Izatt, G. Clark, J. Bradshaw, J. Lamb, and J. Christensen, Separ. Purif. Methods 15, 21 (1986).

    Article  CAS  Google Scholar 

  20. D. McBride, R. Izatt Jr, J. Lamb, and J. Christensen, Macrocyclic Compounds (Academic Press, London, 1984).

    Google Scholar 

  21. A. Nezhadali, Z. Es’haghi, S. Bahar, A. Banaei, and J. A. Shiran, J. Braz. Chem. Soc. 27, 99 (2016).

    CAS  Google Scholar 

  22. G. Rounaghi and M. Kazemi, J. Inclus. Phenom. Macrocycl. Chem. 55, 347 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Sanavi Khoshnood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setareh Akbari, Khoshnood, R.S. & Pourayoubi, M. Separation/Competitive Transport of Heavy Metal Ions across the Bulk Liquid Membranes with N,N',N''-Tris(4-methylphenyl)phosphoric Triamide As Carrier. Russ. J. Phys. Chem. 93, 2472–2476 (2019). https://doi.org/10.1134/S0036024419120264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120264

Keywords:

Navigation