Log in

Comparative Study of Chromium(VI) Removal from Simulated Industrial Wastewater with Ion Exchange Resins

  • Physical Chemistry of Separation Processes. Chromatography
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Ion exchange process is an alternative technique for removal of heavy metal ions from industrial wastewater. The main aim of this paper is to evaluate the performance of different ion exchange resins in removing Cr(VI) from wastewater. The effects of resin types and dosage, initial pH were examined systemically. The results showed that the performance of different resins had obvious difference for the removal of the Cr(VI) ions, in which the type of functional groups of the resin was the main factor. The SEM images indicated that the micro-morphology of resins before and after adsorption of the Cr(VI) presented a little difference. The EDS analysis showed that the adsorbed Cr(VI) was uniformly distributed at the surface of the resins with formation of oxygen-containing groups. The adsorption isotherms and kinetics of Cr(VI) by the different resins are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Altundogan, Process Biochem. 40, 1443 (2005).

    Article  CAS  Google Scholar 

  2. S. Rengaraj, C. K. Joo, Y. Kim, and J. Yi, J. Hazard. Mater. 102, 257 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. J. Nouri, A. H. Mahvi, G. R. Jahed, and A. A. Babae, Environ. Geol. 55, 1337 (2007).

    Article  CAS  Google Scholar 

  4. J. Hu, I. Lo, and G. Chen, Sep. Purif. Technol. 56, 249 (2007).

    Article  CAS  Google Scholar 

  5. S. Yalçin and R. Apak, Anal. Chim. Acta 505, 25 (2004).

    Article  CAS  Google Scholar 

  6. W.-P. Yang, Z.-J. Zhang, and W. Deng, Anal. Chim. Acta. 485, 169 (2003).

    Article  CAS  Google Scholar 

  7. G. M. Wuilloud, R. G. Wuilloud, J. C. A. de Wuilloud, and R. A. Olsina, J. Pharmaceut. Biomed. 31, 117 (2003).

    Article  CAS  Google Scholar 

  8. V. Kumari, M. Sasidharan, and A. Bhaumik, Dalton Trans. 44, 1924 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. F. A. Cotton and G. Wilkinson, Basic Inorganic Chemistry (Wiley, New York, 1976).

    Google Scholar 

  10. D. Clifford, A. K. Sengupta, and S. Subramonian, Water Res. 20, 1177 (1986).

    Article  Google Scholar 

  11. A. K. Sengupta and D. Clifford, Environ. Sci. Technol. 20, 149 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. C. Kim, Q. Zhou, B. Deng, E. C. Thornton, and H. Xu, Environ. Sci. Technol. 35, 2219 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. M. Pettine, L. Campanella, and F. J. Millero, Environ. Sci. Technol. 36, 901 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. S. Pamukcu, A. Weeks, and J. K. Wittle, Environ. Sci. Technol. 38, 1236 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. S. T. Farrell and C. B. Breslin, Environ. Sci. Technol. 38, 4671 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. T. Z. Sadyrbaeva, Chem. Eng. Process. 99, 183 (2016).

    Article  CAS  Google Scholar 

  17. S. Rangaraj, K. H. Yeon, and S. H. Moon, J. Hazard. Mater. B 87, 273 (2001).

    Article  Google Scholar 

  18. J. A. S. Tenorio and D. C. R. Espinosa, Waste Manage. 21, 637 (2001).

    Article  CAS  Google Scholar 

  19. E. Korngold, N. Belayev, and L. Aronov, Sep. Purif. Technol. 33, 179 (2003).

    Article  CAS  Google Scholar 

  20. L. Rafati, A. H. Mahvi, A. R. Asgari, and S. S. Hosseini, Int. J. Environ. Sci. Technol. 7, 147 (2010).

    Article  CAS  Google Scholar 

  21. E. Pehlivan and S. Cetin, J. Hazard. Mater. 163, 448 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. S. Edebali and E. Pehlivan, Powder Technol. 301, 520 (2016).

    Article  CAS  Google Scholar 

  23. R. Hans, G. Senanayake, L. C. S. Dharmasiri, J. A. P. Mathes, and D. J. Kim, Hydrometallurgy 164, 208 (2016).

    Article  CAS  Google Scholar 

  24. T. Engel, Physical Chemistry, 2nd ed. (Pearson, Prentice-Hall, 2006).

    Google Scholar 

  25. X. Qu, M. Tian, B. Liao, and A. Chen, Electrochim. Acta 55, 5367 (2010).

    Article  CAS  Google Scholar 

  26. I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916).

    Article  CAS  Google Scholar 

  27. H. M. F. Freundlich, J. Phys. Chem. 57, 385 (1906).

    CAS  Google Scholar 

  28. O. Kusku, B. L. Rivas, B. F. Urbano, M. Arda, N. Kabay, and M. Bryjak, J. Chem. Technol. Biotechnol. 89, 851 (2014).

    Article  CAS  Google Scholar 

  29. W. Garcia-Vasquez, L. Dammak, C. Larchet, V. Nikonenko, and D. Grande, J. Membrane Sci. 507, 12 (2016).

    Article  CAS  Google Scholar 

  30. K. **ao, F. Xu, L. Jiang, N. Duan, and S. Zheng, Chem. Eng. J. 283, 1349 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyuan Shi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shi, S., Cao, H. et al. Comparative Study of Chromium(VI) Removal from Simulated Industrial Wastewater with Ion Exchange Resins. Russ. J. Phys. Chem. 92, 1229–1236 (2018). https://doi.org/10.1134/S0036024418060237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418060237

Keywords

Navigation