Log in

Features of the oxidation of multiwalled carbon nanotubes

  • Commemorating the Journal’s 85th Anniversary
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Features of the functionalization of multiwalled carbon nanotubes (MWCNTs) with a conical (Ni precursor) and cylindrical (Fe precursor) arrangement of graphene layers using various oxidizing agents are studied. The initial diameter of pyrolytically prepared tubes varies from 20 to 80 nm with a maximum at 40–45 nm and from 10 to 30 nm with a maximum at 18 nm in the first and second cases, respectively. Oxidative modification of the MWCNT surfaces is conducted using HNO3 and H2O2 with ultrasound activation, ozonation in a glow discharge plasma of oxygen, and treatment with liquid ozone. Thermal and elemental analyses and IR spectroscopy show that the highest content of functional groups is achieved in the samples treated with nitric acid, where the conical MWCNTs are subject to surface functionalization. It is concluded that in order to achieve a similar result, cylindrical tubes must be treated with liquid ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Radushkevich and V. M. Lushkinovich, Zh. Fiz. Khim. 26, 88 (1952).

    CAS  Google Scholar 

  2. Z. Ya. Kosakovskaya, L. A. Chernozatonskii, and E. A. Fedorov, JETP Lett. 56, 26 (1992).

    Google Scholar 

  3. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  4. S. Yao and Y. Zhu, Adv. Mater. 27, 1480 (2015).

    Article  CAS  Google Scholar 

  5. J. Prasek, J. Drbohlavova, J. Chomoucka, et al., J. Mater. Chem. 21, 15872 (2011).

    Article  CAS  Google Scholar 

  6. N. Cherkasov, S. V. Savilov, A. S. Ivanov, et al., Appl. Surf. Sci. 308, 388 (2014).

    Article  CAS  Google Scholar 

  7. W. Yeoh, K. Lee, S. Chai, et al., New Carbon Mater. 24, 119 (2009).

    Article  CAS  Google Scholar 

  8. J. Lee, M. Kim, C. K. Hong, and S. E. Shim, Meas. Sci. Technol. 18, 3707 (2007).

    Article  CAS  Google Scholar 

  9. Chao-Xuan Liu and **-Woo Choi, Nanomaterials 2, 329 (2012).

    Article  CAS  Google Scholar 

  10. Zhaoa Zhiyuan, Yanga Zhanhong, Huc Youwang, et al., Appl. Surf. Sci. 276, 476 (2013).

    Article  Google Scholar 

  11. A. Hirsch, Angew. Chem., Int. Ed. Engl. 41, 1853 (2002).

    Article  CAS  Google Scholar 

  12. J. Zhao, H. Park, J. Han, and J. P. Lu, J. Phys. Chem. B 108, 4227 (2004).

    Article  CAS  Google Scholar 

  13. D. Sung, S. Hong, Y. Kim, et al., Appl. Phys. Lett. 89, 243110 (2006).

    Article  Google Scholar 

  14. M. J. O’Connell, P. Boul, L. M. Ericson, et al., Chem. Phys. Lett. 342, 265 (2001).

    Article  Google Scholar 

  15. M. Zheng, A. Jagota, E. D. Semke, et al., Nature Mater. 2, 338 (2003).

    Article  CAS  Google Scholar 

  16. I. V. Anoshkin, O. S. Bazykina, E. V. Rakova, and E. G. Rakov, Russ. J. Phys. Chem. A 82, 254 (2008).

    CAS  Google Scholar 

  17. N. B. Cherkasov, S. B. Savilov, A. N. Pryakhin, A. S. Ivanov, and V. V. Lunin, Russ. J. Phys. Chem. A 86, 424 (2012).

    Article  CAS  Google Scholar 

  18. V. V. Chesnokov and R. A. Buyanov, Ser. Krit. Tekhnol., Membr. 28 (4), 75 (2005).

    Google Scholar 

  19. A. V. Sobolev, N. B. Cherkasov, I. A. Presniakov, and S. V. Savilov, Hyperfine Interact. 207, 25 (2012).

    Article  CAS  Google Scholar 

  20. A. V. Sobolev, S. V. Savilov, N. B. Cherkasov, et al., Hyperfine Interact. 207, 29 (2012).

    Article  CAS  Google Scholar 

  21. C. Branca, F. Frusteri, V. Magazu, and A. Mangione, J. Phys. Chem. B 108, 3469 (2004).

    Article  CAS  Google Scholar 

  22. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed. (Wiley, 2004).

    Google Scholar 

  23. M. N. Kirikova, A. C. Ivanov, C. B. Savilov, and V. V. Lunin, Russ. Chem. Bull. 57, 298 (2008).

    Article  CAS  Google Scholar 

  24. T. M. Ivanova, K. I. Maslakov, S. V. Savilov, A. S. Ivanov, A. V. Egorov, R. V. Linko, and V. V. Lunin, Russ. Chem. Bull. 62, 640 (2013).

    Article  CAS  Google Scholar 

  25. V. Z. Radkeich, T. L. Senko, K. Wilson, et al., Appl. Catal. A: Gen. 335, 241 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Savilov.

Additional information

Original Russian Text © S.V. Savilov, A.S. Ivanov, S.A. Chernyak, M.N. Kirikova, J. Ni, V.V. Lunin, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 11, pp. 1723–1730.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savilov, S.V., Ivanov, A.S., Chernyak, S.A. et al. Features of the oxidation of multiwalled carbon nanotubes. Russ. J. Phys. Chem. 89, 1989–1996 (2015). https://doi.org/10.1134/S0036024415110175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415110175

Keywords

Navigation