Log in

Copper(II) Complexes with Mono- and Double Reduced Forms of 3,5-Di-tert-octyl-o-benzoquinone

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Copper(II) complexes based on 3,5-di-tert-octyl-o-benzoquinone (3,5-t-Oc-Q) have been synthesized. Derivatives of the composition (3,5-t-Oc-SQ)2Cu (I), (3,5-t-Oc-Cat)Cu(Phen) (II), (3,5‑t-Oc-Cat)Cu(DPQ) (III), and (3,5-t-Oc-Cat)Cu(DPPZ) (IV) have been obtained and characterized, where 3,5-t-Oc-SQ is the radical anion of 3,5-di-tert-octyl-o-benzoquinone, 3,5-t-Oc-Cat is the 3,5-di-tert-octyl-o-benzoquinone dianion, Phen is phenanthroline, DPQ is dipyrido[3,2-d:2′,3′-f]quinoxaline, and DPPZ is dipyrido[3,2-a:2′,3′-c]phenazine. The molecular and crystal structures of complexes I and II have been determined by X-ray diffraction. The spectral characteristics of the synthesized copper(II) derivatives have been studied using electron absorption spectroscopy. Crystallographic data for compounds I and II have been deposited with the Cambridge Structural Database (nos. 2291614 and 2279045 for I and II, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Nakada, T. Matsumoto, and H.-C. Chang, Coord. Chem. Rev. 473, 214804 (2022). https://doi.org/10.1016/j.ccr.2022.214804

    Article  CAS  Google Scholar 

  2. P. Chaudhuri, C. N. Verani, E. Bill, et al., J. Am. Chem. Soc. 123, 2213 (2001). https://doi.org/10.1021/ja003831d

    Article  CAS  PubMed  Google Scholar 

  3. R. Mukherjee, Inorg. Chem. 59, 12961 (2020). https://doi.org/10.1021/acs.inorgchem.0c00240

    Article  CAS  PubMed  Google Scholar 

  4. S. Sproules and K. Wieghardt, Coord. Chem. Rev. 254, 1358 (2010). https://doi.org/10.1016/j.ccr.2009.12.012

    Article  CAS  Google Scholar 

  5. R. Eisenberg, Coord. Chem. Rev. 255, 825 (2011). https://doi.org/10.1016/j.ccr.2010.09.003

    Article  CAS  Google Scholar 

  6. R. Eisenberg and H. B. Gray, Inorg. Chem. 50, 9741 (2011). https://doi.org/10.1021/ic2011748

    Article  CAS  PubMed  Google Scholar 

  7. T. Kusamoto and H. Nishihara, Coord. Chem. Rev. 380, 419 (2019). https://doi.org/10.1016/j.ccr.2018.09.012

    Article  CAS  Google Scholar 

  8. W. Kaim and B. Schwederski, Coord. Chem. Rev. 254, 1580 (2010). https://doi.org/10.1016/j.ccr.2010.01.009

    Article  CAS  Google Scholar 

  9. B. I. Kharisov, M. A. Méndez-Rojas, A. D. Garnovskii, et al., J. Coord. Chem. 55, 745 (2002). https://doi.org/10.1080/0095897022000001511

    Article  CAS  Google Scholar 

  10. S. V. Baryshnikova and A. I. Poddel’sky, Molecules 27, 3928 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. Monni, M. S. Angotzi, M. Oggianu, et al., J. Mater. Chem. C 10, 1548 (2022). https://doi.org/10.1039/d1tc05335c

    Article  CAS  Google Scholar 

  12. C. G. Pierpont, Coord. Chem. Rev. 216217, 99 (2001). https://doi.org/10.1016/S0010-8545(01)00309-5

  13. S. V. Baryshnikova, A. I. Poddel’sky, E. V. Bellan, et al., Inorg. Chem. 59, 6774 (2020). https://doi.org/10.1021/acs.inorgchem.9b03757

    Article  CAS  PubMed  Google Scholar 

  14. S. V. Baryshnikova, E. V. Bellan, A. I. Poddel’skii, et al., Dokl. Chem. 474, 101 (2017). https://doi.org/10.1134/S0012500817050019

    Article  CAS  Google Scholar 

  15. A. V. Piskunov, A. V. Maleeva, A. S. Bogomyakov, et al., Polyhedron 102, 715 (2015). https://doi.org/10.1016/j.poly.2015.10.045

    Article  CAS  Google Scholar 

  16. A. V. Piskunov, A. V. Maleeva, G. K. Fukin, et al., Inorg. Chim. Acta 455, 213 (2017). https://doi.org/10.1016/j.ica.2016.10.030

    Article  CAS  Google Scholar 

  17. E. V. Bellan, A. I. Poddel’sky, N. A. Protasenko, et al., Inorg. Chem. Commun. 50, 1 (2014). https://doi.org/10.1016/j.inoche.2014.10.001

    Article  CAS  Google Scholar 

  18. C. G. Pierpont, Coord. Chem. Rev. 219221, 415 (2001). https://doi.org/10.1016/S0010-8545(01)00342-3

  19. E. V. Bellan, A. I. Poddel’sky, N. A. Protasenko, et al., ChemistrySelect 1, 2988 (2016). https://doi.org/10.1002/slct.201600506

    Article  CAS  Google Scholar 

  20. N. A. Protasenko and A. I. Poddel’sky, Theor. Exp. Chem 56, 338 (2020). https://doi.org/10.1007/s11237-020-09663-1

    Article  CAS  Google Scholar 

  21. C. G. Pierpont and R. M. Buchanan, Coord. Chem. Rev. 38, 45 (1981). https://doi.org/10.1016/S0010-8545(00)80499-3

    Article  CAS  Google Scholar 

  22. T. Tezgerevska, K. G. Alley, and C. Boskovic, Coord. Chem. Rev. 268, 23 (2014). https://doi.org/10.1016/j.ccr.2014.01.014

    Article  CAS  Google Scholar 

  23. A. V. Maleeva, O. Y. Trofimova, I. A. Yakushev, et al., Russ. J. Coord. Chem. 49, 420 (2023). https://doi.org/10.1134/S1070328423600134

    Article  CAS  Google Scholar 

  24. I. V. Ershova, A. V. Maleeva, R. R. Aisin, et al., Russ. Chem. Bull. 72, 193 (2023). https://doi.org/10.1007/s11172-023-3724-2

    Article  CAS  Google Scholar 

  25. K. I. Pashanova, I. V. Ershova, O. Y. Trofimova, et al., Molecules 27, 8175 (2022). https://doi.org/10.3390/molecules27238175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. V. Maleeva, I. V. Ershova, O. Y. Trofimova, et al., Mendeleev Commun. 32, 83 (2022). https://doi.org/10.1016/j.mencom.2022.01.027

    Article  CAS  Google Scholar 

  27. M. L. Kirk, D. A. Shultz, A. R. Marri, et al., J. Am. Chem. Soc. 144, 21005 (2022). https://doi.org/10.1021/jacs.2c09680

    Article  CAS  PubMed  Google Scholar 

  28. K. I. Pashanova, V. O. Bitkina, I. A. Yakushev, et al., Molecules 26, 4622 (2021). https://doi.org/10.3390/molecules26154622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. L. Kirk, D. A. Shultz, P. Hewitt, et al., Chem. Sci. 12, 13704 (2021). https://doi.org/10.1039/D1SC02965G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. L. Kirk, D. A. Shultz, J. Chen, et al., J. Am. Chem. Soc. 143, 10519 (2021). https://doi.org/10.1021/jacs.1c04149

    Article  CAS  PubMed  Google Scholar 

  31. A. V. Cherkasova, K. A. Kozhanov, A. A. Zolotukhin, et al., Russ. J. Coord. Chem. 45, 489 (2019). https://doi.org/10.1134/S1070328419070029

    Article  CAS  Google Scholar 

  32. S. Sobottka, M. Nößler, A. L. Ostericher, et al., Chem.—Eur. J. 26, 1314 (2020). https://doi.org/10.1002/chem.201903700

    Article  CAS  PubMed  Google Scholar 

  33. L. Chiang, K. Herasymchuk, F. Thomas, et al., Inorg. Chem. 54, 5970 (2015). https://doi.org/10.1021/acs.inorgchem.5b00783

    Article  CAS  PubMed  Google Scholar 

  34. T. Kurahashi and H. Fujii, J. Am. Chem. Soc. 133, 8307 (2011). https://doi.org/10.1021/ja2016813

    Article  CAS  PubMed  Google Scholar 

  35. C. L. Linfoot, P. Richardson, K. L. McCall, et al., Solar Energy 85, 1195 (2011). https://doi.org/10.1016/j.solener.2011.02.023

    Article  CAS  Google Scholar 

  36. Q. Miao, J. Gao, Z. Wang, et al., Inorg. Chim. Acta 376, 619 (2011). https://doi.org/10.1016/j.ica.2011.07.046

    Article  CAS  Google Scholar 

  37. K. Neuthe, C. S. Popeney, K. Bialecka, et al., Polyhedron 81, 583 (2014). https://doi.org/10.1016/j.poly.2014.07.015

    Article  CAS  Google Scholar 

  38. L. A. Cameron, J. W. Ziller, and A. F. Heyduk, Chem. Sci. 7, 1807 (2016). https://doi.org/10.1039/C5SC02703A

    Article  CAS  PubMed  Google Scholar 

  39. N. Deibel, D. Schweinfurth, J. Fiedler, et al., Dalton Trans. 40, 9925 (2011). https://doi.org/10.1039/C1DT10856E

    Article  CAS  PubMed  Google Scholar 

  40. K. Tahara, Y. Ashihara, T. Higashino, et al., Dalton Trans. 48, 7367 (2019). https://doi.org/10.1039/C8DT05057K

    Article  CAS  PubMed  Google Scholar 

  41. N. F. Romashev, P. A. Abramov, I. V. Bakaev, et al., Inorg. Chem. 61, 2105 (2022). https://doi.org/10.1021/acs.inorgchem.1c03314

    Article  CAS  PubMed  Google Scholar 

  42. N. Deibel, D. Schweinfurth, S. Hohloch, et al., Chem. Commun. 48, 2388 (2012). https://doi.org/10.1039/C2CC15245B

    Article  CAS  Google Scholar 

  43. J. Yang, D. K. Kersi, C. P. Richers, et al., Inorg. Chem. 57, 13470 (2018). https://doi.org/10.1021/acs.inorgchem.8b02087

    Article  CAS  PubMed  Google Scholar 

  44. D. A. Shultz, R. Stephenson, and M. L. Kirk, Dalton Trans. 52, 1970 (2023). https://doi.org/10.1039/D2DT03385B

    Article  CAS  PubMed  Google Scholar 

  45. P. A. Scattergood, P. Jesus, H. Adams, et al., Dalton Trans. 44, 11705 (2015). https://doi.org/10.1039/C4DT03466J

    Article  CAS  PubMed  Google Scholar 

  46. M. P. Bubnov, A. V. Piskunov, A. A. Zolotukhin, et al., Russ. J. Coord. Chem. 46, 224 (2020). https://doi.org/10.1134/S107032842003001X

    Article  CAS  Google Scholar 

  47. T. N. Kocherova, N. O. Druzhkov, M. V. Arsenyev, et al., Russ. Chem. Bull. 72, 1192 (2023). https://doi.org/10.1007/s11172-023-3889-8

    Article  CAS  Google Scholar 

  48. T. N. Kocherova, N. O. Druzhkov, K. A. Martyanov, et al., Rus. Chem. Bull. 69, 2383 (2020). https://doi.org/10.1007/s11172-020-3051-9

    Article  CAS  Google Scholar 

  49. T. N. Kocherova, N. O. Druzhkov, A. S. Shavyrin, et al., Russ. Chem. Bull. 70, 916 (2021). https://doi.org/10.1007/s11172-021-3167-6

    Article  CAS  Google Scholar 

  50. A. V. Maleeva, O. Yu. Trofimova, T. N. Kocherova, et al., Russ. J. Coord. Chem. 49, 718 (2023). https://doi.org/10.1134/S1070328423600742

    Article  CAS  Google Scholar 

  51. A. V. Klimashevskaya, K. V. Arsenyeva, A. V. Cherkasov, et al., J. Struct. Chem. 64, 2271 (2023). https://doi.org/10.1134/S0022476623120016

    Article  CAS  Google Scholar 

  52. S. V. Baryshnikova, M. V. Arsen’ev, R. V. Rumyantsev, et al., Russ. J. Coord. Chem. 49, 429 (2023). https://doi.org/10.1134/S107032842360016X

  53. E. B. Van der Tol, H. J. Van Ramesdonk, J. W. Verhoeven, et al., Chem.—Eur. J. 4, 2315 (1998). https://doi.org/10.1002/(SICI)1521-3765(19981102)4:1-1<2315::AID-CHEM2315>3.0.CO;2-E

    Article  CAS  Google Scholar 

  54. Rigaku Oxford Diffraction C.s.s., ver. 1.171.41.39a. Rigaku Corporation, Wroclaw, Poland, 2020.

  55. G. M. Sheldrick, Acta Crystallogr. C71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  56. G. M. Sheldrick, Acta Crystallogr. A71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  57. R. D. Svetogorov, P. V. Dorovatovskii, and V. A. Lazarenko, Cryst. Res. Technol. 55, 1900184 (2020). https://doi.org/10.1002/crat.201900184

    Article  CAS  Google Scholar 

  58. W. Kabsch, Acta Crystallogr., Sect. D 66, 125 (2010). https://doi.org/10.1107/S0907444909047337

    Article  CAS  Google Scholar 

  59. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  60. V. I. Ovcharenko, E. V. Gorelik, S. V. Fokin, et al., J. Am. Chem. Soc. 129, 10512 (2007). https://doi.org/10.1021/ja072463b

    Article  CAS  PubMed  Google Scholar 

  61. S. L. Veber, M. V. Fedin, S. V. Fokin, et al., Appl. Magn. Reson. 37, 693 (2010). https://doi.org/10.1007/s00723-009-0087-2

    Article  CAS  Google Scholar 

  62. J. S. Thompson and J. C. Calabrese, J. Am. Chem. Soc. 108, 1903 (1986). https://doi.org/10.1021/ja00268a031

    Article  CAS  Google Scholar 

  63. S. N. Brown, Inorg. Chem. 51, 1251 (2012). https://doi.org/10.1021/ic202764j

    Article  CAS  PubMed  Google Scholar 

  64. B. J. Hathaway and D. E. Billing, Coord. Chem. Rev. 5, 143 (1970). https://doi.org/10.1016/S0010-8545(00)80135-6

    Article  CAS  Google Scholar 

  65. A. V. Piskunov, A. V. Maleeva, I. N. Mescheryakova, et al., Eur. J. Inorg. Chem. 4318 (2012). https://doi.org/10.1002/ejic.201200535

  66. M. G. Chegerev, A. V. Piskunov, A. V. Maleeva, et al., Eur. J. Inorg. Chem. 2016, 3813 (2016). https://doi.org/10.1002/ejic.201600501

    Article  CAS  Google Scholar 

  67. R. A. Davidson, J. Hao, A. L. Rheingold, et al., Polyhedron 136, 176 (2017). https://doi.org/10.1016/j.poly.2017.10.003

    Article  CAS  Google Scholar 

  68. M. A. Zherebtsov, M. V. Arsenyev, E. V. Baranov, et al., J. Struct. Chem. 64, 2051 (2023). https://doi.org/10.1134/S0022476623110033

    Article  CAS  Google Scholar 

  69. P. Verma, J. Weir, L. Mirica, et al., Inorg. Chem. 50, 9816 (2011). https://doi.org/10.1021/ic200958g

    Article  CAS  PubMed  Google Scholar 

  70. S. S. Batsanov, Russ. J. Inorg. Chem. 36, 1694 (1991).

    Google Scholar 

  71. O. Yu. Trofimova, K. I. Pashanova, I. V. Ershova, et al., Russ. J. Inorg. Chem. 68, 1166 (2023). https://doi.org/10.1134/S0036023623601344

    Article  Google Scholar 

  72. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd Ed. (Wiley-VCH, 1988).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use “Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences” (Nizhny Novgorod, Russia). X-ray diffraction data for complex II were obtained at the X-ray beam of the Belok station of the Kurchatov Synchrotron Radiation Center at the National Research Center “Kurchatov Institute” (Moscow, Russia).

Funding

This study was carried out within the framework of the State assignment of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Trofimova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofimova, O.Y., Maleeva, A.V., Arseniev, M.V. et al. Copper(II) Complexes with Mono- and Double Reduced Forms of 3,5-Di-tert-octyl-o-benzoquinone. Russ. J. Inorg. Chem. (2024). https://doi.org/10.1134/S0036023623602945

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023623602945

Keywords:

Navigation