Log in

Structure and Electrical Conductivity of Bismuth- and Germanium-Doped Calcium Molybdates

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ca1 – 2xBi2xMo1 – xGexO4 solid solutions with a scheelite-like structure (space group I41/a) and the homogeneity range х = 0.0–0.4 were prepared using standard ceramic technology. The unit cell parameter с and unit cell volume increase as the dopant concentration increases due to the changing size of Ca/BiO8 polyhedra. The predominant thermal expansion of Ca/BiO8 polyhedra was inferred from the temperature-dependent unit cell parameters and Raman spectral patterns. The Ca/Bi–O and Mo/Ge–O bond lengths were calculated. The increasing dopant concentration decreases the thermal expansion coefficient of the ceramics and increases the electrical conductivity and activation energy of the complex oxides compared to the matrix compound. The effective oxygen diffusion coefficient is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. H. Kato, N. Matsudo, and A. Kudo, Chem. Lett. 33, 1216 (2004). https://doi.org/10.1246/cl.2004.1216

    Article  CAS  Google Scholar 

  2. S. D. Ramarao, S. Roopas Kiran, and V. R. K. Murthy, Mater. Res. Bull. 56, 71 (2014). https://doi.org/10.1016/j.materresbull.2014.04.064

    Article  CAS  Google Scholar 

  3. G.-K. Choi, J. Kim, S. H. Yoon, et al., J. Eur. Ceram. Soc. 27, 3063 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.037

    Article  CAS  Google Scholar 

  4. V. B. Mikhailik, H. Kraus, G. Miller, et al., J. Appl. Phys. 97, 083523 (2005). https://doi.org/10.1063/1.1872198

    Article  CAS  Google Scholar 

  5. B. K. Maji, H. Jena, R. Asuvathraman, et al., J. Alloys Compd. 640, 475 (2015). https://doi.org/10.1016/j.jallcom.2015.04.054

    Article  CAS  Google Scholar 

  6. A. Petrov and P. Kofstad, J. Solid State Chem. 30, 83 (1979). https://doi.org/10.1016/0022-4596(79)90133-6

    Article  CAS  Google Scholar 

  7. H.-N. Im, M.-B. Choi, S.-Y. Jeon, et al., Ceram. Int. 37, 49 (2011). https://doi.org/10.1016/j.ceramint.2010.08.004

    Article  CAS  Google Scholar 

  8. J. Cheng, Ch. Liu, W. Cao, et al., Mater. Res. Bull. 46, 185 (2011). https://doi.org/10.1016/j.materresbull.2010.11.019

    Article  CAS  Google Scholar 

  9. S. K. Arora, R. S. Godbole, and D. Lakshminarayana, J. Mater. Sci. 18, 1359 (1983). https://doi.org/10.1007/BF01111955

    Article  CAS  Google Scholar 

  10. J. Cheng, W. Bao, Ch. Han, et al., J. Power Sources 195, 1849 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.017

    Article  CAS  Google Scholar 

  11. J. Cheng and J. He, Mater. Lett. 209, 525 (2017). https://doi.org/10.1016/j.matlet.2017.08.094

    Article  CAS  Google Scholar 

  12. T. Esaka, Solid State Ionics 136–137, 1 (2000). https://doi.org/10.1016/S0167-2738(00)00377-5

    Article  Google Scholar 

  13. W. Bollmann, Cryst. Res. Technol. 18, 100 (1978). https://doi.org/10.1002/crat.19780130816

    Article  Google Scholar 

  14. M. A. Rigdon and R. E. Grace, J. Am. Ceram. Soc. 56, 475 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12527.x

    Article  CAS  Google Scholar 

  15. H.-H. Guo, D. Zhou, L.-X. Pang, et al., J. Eur. Ceram. Soc. 39, 2365 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.010

    Article  CAS  Google Scholar 

  16. Z. A. Mikhaylovskaya, E. S. Buyanova, S. A. Petrova, et al., Chim. Techno Acta 8, 20218204 (2021). https://doi.org/10.15826/chimtech.2021.8.2.04

    Article  CAS  Google Scholar 

  17. N. I. Matskevich, A. N. Semerikova, N. V. Gelfond, et al., Russ. J. Inorg. Chem. 65, 743 (2020). https://doi.org/10.1134/S0036023620050162

    Article  CAS  Google Scholar 

  18. P. E. Dergacheva, I. V. Kul’bakin, A. A. Ashmarin, et al., Russ. J. Inorg. Chem. 66, 1229 (2021). https://doi.org/10.1134/S0036023621080040

    Article  CAS  Google Scholar 

  19. O. S. Kaimieva, I. E. Sabirova, E. S. Buyanova, et al., Russ. J. Inorg. Chem. 67, 1348 (2022). https://doi.org/10.1134/S0036023622090054

    Article  CAS  Google Scholar 

  20. Yu. V. Emel’yanova, M. V. Morozova, Z. A. Mikhailovskaya, et al., Russ. J. Electrochem. 45, 382 (2009). https://doi.org/10.1134/S1023193509040041

    Article  CAS  Google Scholar 

  21. J. Laugier and B. Bochu, LMGP-Suite of Programs for the Interpretation of X-ray Experiments (ENSP, Lab. Materiaux Genie Phys, Grenoble, 2003).

    Google Scholar 

  22. R. S. Bubnova, V. A. Firsova, and S. K. Filatov, Glass Phys. Chem. 39, 347 (2013). https://doi.org/10.1134/S108765961303005X

    Article  CAS  Google Scholar 

  23. P. S. Peercy and G. A. Samara, Phys. Rev. B 8, 2033 (1973). https://doi.org/10.1103/PHYSREVB.8.2033

    Article  CAS  Google Scholar 

  24. A. V. Klimova, Z. A. Mikhailovskaya, E. S. Buyanova, et al., Russ. J. Electrochem. 57, 825 (2021). https://doi.org/10.1134/S102319352108005X

    Article  CAS  Google Scholar 

  25. S. N. Achary, S. J. Patwe, M. D. Mathews, et al., J. Phys. Chem. Solids 67, 774 (2006). https://doi.org/10.1016/j.jpcs.2005.11.009

    Article  CAS  Google Scholar 

  26. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  27. P. G. Zverev, Phys. Status Solidi C 1, 3101 (2004). https://doi.org/10.1002/PSSC.200405413

    Article  CAS  Google Scholar 

  28. Z. A. Mikhaylovskaya, E. S. Buyanova, S. A. Petrova, et al., Chim. Techno Acta 9, 20229410 (2022). https://doi.org/10.15826/chimtech.2022.9.4.10

    Article  CAS  Google Scholar 

  29. H. M. Rietveld, J. Appl. Crystalogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  30. Z. A. Mikhaylovskaya, I. Abrahams, S. A. Petrova, et al., J. Solid State Chem. 291, 121627 (2020). https://doi.org/10.1016/j.jssc.2020.121627

    Article  CAS  Google Scholar 

  31. J. T. S. Irvine, D. C. Sinclair, and A. R. West, Adv. Mater. 2, 132 (1990). https://doi.org/10.1002/adma.19900020304

    Article  CAS  Google Scholar 

  32. Y. B. Abraham, N. A. W. Holzwarth, R. T. Williams, et al., Phys. Rev. B 64, 245109 (2001). https://doi.org/10.1103/PhysRevB.64.245109

    Article  CAS  Google Scholar 

  33. H. Zhao, F. Zhang, X. Guo, et al., J. Phys. Chem. Solids 71, 1639 (2010). https://doi.org/10.1016/j.jpcs.2010.08.013

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Equipment of the Ural-M Shared Facilities Center of the Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences was used in the X-ray structural experiments. The Raman spectra were measured in the Geoanalyst Shared Facilities Center of the Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences.

Funding

This work was fulfilled as part of the Government task to the Institute of Geology and Geochemistry (theme No. AAAA-A19-119071090011-6). The retrofit and development of the Geoanalitik Shared Facilities Center of the Institute of Geology and Geochemistry is carried out under a grant from the Ministry of Higher Education and Science of the Russian Federation (agreement No. 075-15-2021-680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Kaimieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaimieva, O.S., Mikhailovskaya, Z.A., Buyanova, E.S. et al. Structure and Electrical Conductivity of Bismuth- and Germanium-Doped Calcium Molybdates. Russ. J. Inorg. Chem. 68, 386–395 (2023). https://doi.org/10.1134/S0036023623600235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600235

Keywords:

Navigation