Log in

Effect of Dopants on the Functional Properties of Lithium-Rich Cathode Materials for Lithium-Ion Batteries

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A comparative study was made of the effect of the dopant nature on the electrochemical performance of lithium-rich oxides of the general composition 0.5Li2MnO3⋅0.5LiMn0.33Ni0.33Co0.31M0.02O2 (M = Mg, Cr, Zr). The obtained materials were tested as cathodes in CR2032 coin-type cells versus lithium metal. The results of the study attested to the fact that the main role in the degradation of the material is played by the migration of transition metals, which depends on the dopant-oxygen binding energy. The do** with magnesium suppresses the phase transition, thus stabilizing the oxide structure. By the 110th cycle in the voltage range of 2.5–4.8 V at a current of 100 mA/g, the sample doped with magnesium retains 10% more specific energy than the initial oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. N. Ates, S. Mukerjee, and K. M. Abraham, J. Electrochem. Soc. 161, A355 (2014). https://doi.org/10.1149/2.070403jes

    Article  CAS  Google Scholar 

  2. R. Robert, C. Villevieille, and P. Novák, J. Mater. Chem. A 2, 8589 (2014). https://doi.org/10.1039/c3ta12643a

    Article  CAS  Google Scholar 

  3. B. J. Liddle, S. M. Collins, and B. M. Bartlett, Energy Environ. Sci. 3, 1339 (2010). https://doi.org/10.1039/c0ee00059k

    Article  CAS  Google Scholar 

  4. G. A. Buzanov, N. P. Simonenko, K. Y. Zhizhin, et al., Russ. J. Inorg. Chem. 64, 1482 (2019). https://doi.org/10.1134/S0036023619120040

    Article  CAS  Google Scholar 

  5. X. Feng, Z. Yang, D. Tang, et al., Phys. Chem. Chem. Phys. 17, 1257 (2015). https://doi.org/10.1039/C4CP04087B

    Article  CAS  PubMed  Google Scholar 

  6. B. R. Long, J. R. Croy, J. S. Park, et al., J. Electrochem. Soc. 161, A2160 (2014). https://doi.org/10.1149/2.0681414jes

    Article  CAS  Google Scholar 

  7. R. Wang, X. Li, L. Liu, et al., Electrochem. Commun. 60, 70 (2015). https://doi.org/10.1016/j.elecom.2015.08.003

    Article  CAS  Google Scholar 

  8. Z. Yu, X. Qu, A. Dou, et al., ACS Appl. Mater. Interfaces 11, 35777 (2019). https://doi.org/10.1021/acsami.9b12822

    Article  CAS  PubMed  Google Scholar 

  9. T. Ohzuku, M. Nagayama, K. Tsuji, et al., J. Mater. Chem. 21, 10179 (2011). https://doi.org/10.1039/c0jm04325g

    Article  CAS  Google Scholar 

  10. P. Rozier and J. M. Tarascon, J. Electrochem. Soc. 162, A2490 (2015). https://doi.org/10.1149/2.0111514jes

    Article  CAS  Google Scholar 

  11. A. Manthiram, J. C. Knight, S.-T. Myung, et al., Adv. Energy Mater. 6, 1501010 (2016). https://doi.org/10.1002/aenm.201501010

    Article  CAS  Google Scholar 

  12. J. Wang, X. He, E. Paillard, et al., Adv. Energy Mater. 6, 1600906 (2016). https://doi.org/10.1002/aenm.201600906

    Article  CAS  Google Scholar 

  13. G. D. Nipan, M. N. Smirnova, D. Y. Kornilov, et al., Russ. J. Inorg. Chem. 65, 573 (2020). https://doi.org/10.1134/S0036023620040130

    Article  CAS  Google Scholar 

  14. Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 4, A191 (2001). https://doi.org/10.1149/1.1407994

    Article  CAS  Google Scholar 

  15. Z. Lu, L. Y. Beaulieu, R. A. Donaberger, et al., J. Electrochem. Soc. 149, A778 (2002). https://doi.org/10.1149/1.1471541

    Article  CAS  Google Scholar 

  16. M. M. Thackeray, S.-H. Kang, C. S. Johnson, et al., J. Mater. Chem. 17, 3112 (2007). https://doi.org/10.1039/b702425h

    Article  CAS  Google Scholar 

  17. C. S. Johnson, N. Li, C. Lefief, et al., Electrochem. Commun. 9, 787 (2007). https://doi.org/10.1016/j.elecom.2006.11.006

    Article  CAS  Google Scholar 

  18. A. D. Robertson and P. G. Bruce, Chem. Mater. 15, 1984 (2003). https://doi.org/10.1021/cm030047u

    Article  CAS  Google Scholar 

  19. A. R. Armstrong, M. Holzapfel, P. Nová, et al., JACS 128, 8694 (2006). https://doi.org/10.1021/ja062027

    Article  CAS  Google Scholar 

  20. C. R. Fell, D. Qian, K. J. Carroll, et al., Chem. Mater. 25, 1621 (2013). https://doi.org/10.1021/cm4000119

    Article  CAS  Google Scholar 

  21. M. Sathiya, G. Rousse, K. Ramesha, et al., Nat. Mater. 12, 827 (2013). https://doi.org/10.1038/nmat3699

    Article  CAS  PubMed  Google Scholar 

  22. G. Assat, A. Iadecola, C. Delacourt, et al., Chem. Mater. 29, 9714 (2017). https://doi.org/10.1021/acs.chemmater.7b03434

    Article  CAS  Google Scholar 

  23. E. McCalla, A. M. Abakumov, M. Saubanere, et al., Science 350, 1516 (2015). https://doi.org/10.1126/science.aac8260

    Article  CAS  PubMed  Google Scholar 

  24. L. S. Pechen, E. V. Makhonina, A. M. Rumyantsev, et al., Russ. J. Inorg. Chem. 63, 1534 (2018). https://doi.org/10.1134/S0036023618120173

    Article  CAS  Google Scholar 

  25. E. V. Makhonina, L. S. Pechen, V. V. Volkov, et al., Russ. Chem. Bull. 68, 301 (2019). https://doi.org/10.1007/s11172-019-2386-6

    Article  CAS  Google Scholar 

  26. L. S. Pechen, E. V. Makhonina, A. M. Rumyantsev, et al., Russ. Chem. Bull. 68, 293 (2019). https://doi.org/10.1007/s11172-019-2385-7

    Article  CAS  Google Scholar 

  27. W. Qi-Hui, A. Thissen, and W. Jaegermann, Chin. Phys. Lett. 23, 2202 (2006). https://doi.org/10.1088/0256-307X/23/8/066

    Article  Google Scholar 

  28. A. G. Kochur, T. M. Ivanova, A. V. Shchukarev, et al., Bull. Russ. Acad. Sci. Phys. 74, 625 (2010). https://doi.org/10.3103/S1062873810050126

    Article  Google Scholar 

  29. A. W. Moses, H. G. G. Flores, J.-G. Kim, et al., Appl. Surf. Sci. 253, 4782 (2007). https://doi.org/10.1016/j.apsusc.2006.10.044

    Article  CAS  Google Scholar 

  30. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, et al., Appl. Surf. Sci. 257, 2717 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  31. https://srdata.nist.gov/xps/main_search_menu.aspx.

  32. A. Apte, V. Tare, and P. Bose, J. Hazard. Mater. 128, 164 (2006). https://doi.org/10.1016/j.jhazmat.2005.07.057

    Article  CAS  PubMed  Google Scholar 

  33. A. R. Armstrong, N. Dupre, A. J. Paterson, et al., Chem. Mater. 16, 3106 (2004). https://doi.org/10.1021/cm034964b

    Article  CAS  Google Scholar 

  34. M. M. Thackeray, Prog. Solid State Chem. 25, 1 (1997). https://doi.org/10.1016/S0079-6786(97)81003-5

    Article  CAS  Google Scholar 

  35. U. Nisar, R. Amin, A. Shakoor, et al., Emergent Mater. 1, 155 (2018). https://doi.org/10.1007/s42247-018-0014-0

    Article  CAS  Google Scholar 

  36. I. R. Mangani, C. W. Park, Y. K. Yoon, et al., J. Electrochem. Soc. 154, A359 (2007). https://doi.org/10.1149/1.2509096

    Article  CAS  Google Scholar 

  37. W. Wang, J. Meng, X. Yue, et al., Chem. Commun. 54, 13809 (2018). https://doi.org/10.1039/C8CC07660J

    Article  CAS  Google Scholar 

  38. Y. Sun, H. Cong, L. Zan, et al., ACS Appl. Mater. Interfaces 9, 38545 (2017). https://doi.org/10.1021/acsami.7b12080

    Article  CAS  PubMed  Google Scholar 

  39. Z. Huang, T. **ong, X. Lin, et al., J. Power Sources 432, 8 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.069

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies in this work were made using the equipment of the Center for Shared Use of Physical Investigation Methods, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by the Russian Science Foundation (project no. 20-13-00423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Pechen or E. V. Makhonina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechen, L.S., Makhonina, E.V., Medvedeva, A.E. et al. Effect of Dopants on the Functional Properties of Lithium-Rich Cathode Materials for Lithium-Ion Batteries. Russ. J. Inorg. Chem. 66, 777–788 (2021). https://doi.org/10.1134/S0036023621050144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050144

Keywords:

Navigation