Log in

Reactive Hot Pressing of HfB2–SiC–Ta4HfC5 Ultra-High Temperature Ceramics

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Highly disperse and reactive (HfB2–SiC)@(Ta2O5–HfO2–C) composite powders were manufactured by sol–gel technology where Ta2O5–HfO2–C amorphous components were nanostructured and distributed in each other as uniformly as possible. The reactive sintering of the prepared composite powders at a relatively low temperature (1800°С) with an exposure time of 30 min and the pressure 30 MPa yielded (HfB2–30 vol % SiC)–xTa4HfC5 ultra-high temperature ceramics (UHTCs), where x = 5, 10, and 15 vol %, with a relative density of 75–78%. X-ray powder diffraction proved the complete conversion of tantalum and hafnium oxides to complex carbide Ta4HfC5. The average grain size as determined by scanning electron microscopy did not exceed 2–3 µm in HfB2 and 30–60 nm for the Ta4HfC5 phase. Thermal analysis in flowing air showed that, in the temperature range 20–1400°С, the increasing percentage of tantalum–hafnium carbide (the least oxidation resistant phase) leads to a systematic increase in oxidation-induced weight gain; however, a tendency to saturation is observed. The microstructural specifics of the oxidized surface are noticed depending on the composition of HfB2–SiC–Ta4HfC5 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013). https://doi.org/10.1134/S0036023613140039

    Article  CAS  Google Scholar 

  2. C. Piriou, O. Rapaud, S. Foucaud, et al., Ceram. Int. 45, 1846 (2019). https://doi.org/10.1016/j.ceramint.2018.10.075

    Article  CAS  Google Scholar 

  3. J. Binner, M. Porter, B. Baker, et al., Int. Mater. Rev. (2019). https://doi.org/10.1080/09506608.2019.1652006

  4. A. Radhi, V. Iacobellis, and K. Behdinan, Compos. B: Eng. 175, 107129 (2019). https://doi.org/10.1016/j.compositesb.2019.107129

    Article  CAS  Google Scholar 

  5. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Sol–Gel Sci. Technol. 92, 386 (2019).https://doi.org/10.1134/S0036023618110177

  6. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 64, 1681 (2019). https://doi.org/10.1134/S0036023619130084

  7. E. P. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Russ. J. Inorg. Chem. 64, 1849 (2019). https://doi.org/10.1134/S0036023619140109

  8. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1484 (2018). https://doi.org/10.1134/S0036023618110177

    Article  CAS  Google Scholar 

  9. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1345 (2018). https://doi.org/10.1134/S0036023618100170

    Article  CAS  Google Scholar 

  10. H. Zhang, D. D. Jayaseelan, I. Bogomol, et al., J. Alloys Compd. 785, 958 (2019). https://doi.org/10.1016/j.jallcom.2019.01.208

    Article  CAS  Google Scholar 

  11. N. Liao, D. Jia, Z. Yang, et al., J. Phys. Chem. Solids 136, 109153 (2020). https://doi.org/10.1016/j.jpcs.2019.109153

    Article  CAS  Google Scholar 

  12. S. Ghadami, E. Taheri-Nassaj, and H. R. Baharvandi, J. Alloys Compd. 809, 151705 (2019). https://doi.org/10.1016/j.jallcom.2019.151705

    Article  CAS  Google Scholar 

  13. A. Purwar, S. Ariharan, B. Basu, et al., Int. J. Refract. Met. Hard Mater. 84, 104972 (2019). https://doi.org/10.1016/j.ijrmhm.2019.104972

    Article  CAS  Google Scholar 

  14. L. Silvestroni, S. Mungiguerra, D. Sciti, et al., Corros. Sci., Art. 108125 (2019). https://doi.org/10.1016/j.corsci.2019.108125

  15. C. Li, Y. Niu, X. Zhong, et al., J. Eur. Ceram. Soc. 39, 4565 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.01

    Article  CAS  Google Scholar 

  16. K. S. Cissel and E. Opila, J. Am. Ceram. Soc. 101, 1765 (2018). https://doi.org/10.1111/jace.15298

    Article  CAS  Google Scholar 

  17. D. Bannykh, A. Utkin, and N. Baklanova, Int. J. Refract. Met. Hard Mater. 84, 105023 (2019). https://doi.org/10.1016/j.ijrmhm.2019.105023

    Article  CAS  Google Scholar 

  18. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 63, 1772 (2018). https://doi.org/10.1134/S003602361814005X

    Article  CAS  Google Scholar 

  19. S. Zhou, Z. Wang, X. Sun, and J. Han, Mater. Chem. Phys. 122, 470 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.028

    Article  CAS  Google Scholar 

  20. X. Sun, X. Zhang, Z. Wang, et al., Key Eng. Mater. 434435, 185 (2010). www.scientific.net/KEM.434-435.185

  21. W.-M. Guo, Y. You, G.-J. Zhang, et al., J. Eur. Ceram. Soc. 35, 1985 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.026

    Article  CAS  Google Scholar 

  22. X. Zhang, Z. Wang, X. Sun, et al., Mater. Lett. 62, 4360 (2008). https://doi.org/10.1016/j.matlet.2008.07.027

    Article  CAS  Google Scholar 

  23. H. **, S. Meng, Q. Yang, and Y. Zhu, Ceram. Int. 39, 5591 (2013). https://doi.org/10.1016/j.ceramint.2012.12.074

    Article  CAS  Google Scholar 

  24. X. H. Zhang, Z. Wang, P. Hu, et al., Scr. Mater. 61, 809 (2009). https://doi.org/10.1016/j.scriptamat.2009.07.001

    Article  CAS  Google Scholar 

  25. AslM. Shahedi, M. J. Zamharir, Z. Ahmadi, and S. Parvizi, Mater. Sci. Eng. A: Struct. 716, 99 (2018). https://doi.org/10.1016/j.msea.2018.01.038

    Article  CAS  Google Scholar 

  26. F. Yang, X. Zhang, J. Han, and S. Du, Mater. Lett. 62, 2925 (2008). https://doi.org/10.1016/j.matlet.2008.01.076

    Article  CAS  Google Scholar 

  27. F. Yang, X. Zhang, J. Han, and S. Diu, J. Compos. Mater. 44, 953 (2010). https://doi.org/10.1177/0021998309346545

    Article  CAS  Google Scholar 

  28. F. Yang, X. Zhang, J. Han, and S. Du, J. Alloys Compd. 472, 395 (2009). https://doi.org/10.1016/j.jallcom.2008.04.092

    Article  CAS  Google Scholar 

  29. J. Lin, Y. Huang, H. Zhang, et al., Ceram. Int. B 41, 15261 (2015). https://doi.org/10.1016/j.ceramint.2015.07.207

    Article  CAS  Google Scholar 

  30. A. Nisar, S. Ariharan, and K. Balani, Ceram. Int. 43, 13483 (2017). https://doi.org/10.1016/j.ceramint.2017.07.053

    Article  CAS  Google Scholar 

  31. A. Nisar and K. Balani, Coatings 7 (8), 110 (2017). https://doi.org/10.3390/coatings7080110

    Article  CAS  Google Scholar 

  32. A. M. Shahedi and K. M. Ghassemi, Mater. Sci. Eng. A: Struct. 625, 385 (2015). https://doi.org/10.1016/j.msea.2014.12.028

    Article  CAS  Google Scholar 

  33. X. Zhang, Y. An, J. Han, et al., RSC Adv. 5, 47060 (2015). https://doi.org/10.1039/C5RA05922D

    Article  CAS  Google Scholar 

  34. Y. An, X. Xu, and K. Gui, Ceram. Int. 42, 14066 (2016). https://doi.org/10.1016/j.ceramint.2016.06.014

    Article  CAS  Google Scholar 

  35. B. Zhang, X. Zhang, C. Hong, et al., ACS Appl. Mater. Interfaces 8, 11675 (2016). https://doi.org/10.1021/acsami.6b00822

    Article  CAS  PubMed  Google Scholar 

  36. S. K. Thimmappa, B. R. Golla, P. V. Bhanu, et al., Ceram. Int. A 45, 9061 (2019). https://doi.org/10.1016/j.ceramint.2019.01.243

    Article  CAS  Google Scholar 

  37. M. Mallik, K. K. Ray, and R. Mitra, Coatings 7, 92 (2017). https://doi.org/10.3390/coatings7070092

    Article  CAS  Google Scholar 

  38. P. Wang, H. Li, J. Kong, et al., Corros. Sci. 159, (2019). https://doi.org/10.1016/j.corsci.2019.108119

  39. Z. Balak, AslM. Shahedi, M. Azizieh, et al., Ceram. Int. 43, 2209 (2017). https://doi.org/10.1016/j.ceramint.2016.11.005

    Article  CAS  Google Scholar 

  40. Carmen Carney, Anish Paul, Saranya Venugopal, et al., J. Eur. Ceram. Soc. 34, 1045 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.018

    Article  CAS  Google Scholar 

  41. M. Mashhadi, M. Shambuli, and S. Safi, J. Mater. Res. Technol. 5, 200 (2016). https://doi.org/10.1016/j.jmrt.2015.10.003

    Article  CAS  Google Scholar 

  42. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 64, 1697 (2019). https://doi.org/10.1134/S0036023619140079

  43. F. Adibpur, S. A. Tayebifard, M. Zakeri, and AslM. Shahedi, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.08.243

  44. R. Inoue, Y. Arai, Y. Kubota, et al., J. Alloys Compd. 731, 310 (2018). https://doi.org/10.1016/j.jallcom.2017.10.034

    Article  CAS  Google Scholar 

  45. X. Wang, W. Ji, J. Hu, et al., Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.09.001

  46. H.-L. Liu, J.-X. Liu, H.-T. Liu, and G.-J. Zhang, Scr. Mater. 107, 140 (2015). https://doi.org/10.1016/j.scriptamat.2015.06.005

    Article  CAS  Google Scholar 

  47. X. Zhang, Q. Qu, J. Han, et al., Scr. Mater. 59, 753 (2008). https://doi.org/10.1016/j.scriptamat.2008.06.004

    Article  CAS  Google Scholar 

  48. W.-W. Wu, G.-J. Zhang, Y.-M. Kan, and P.-L. Wang, J. Am. Ceram. Soc. 91, 2501 (2008). https://doi.org/10.1111/j.1551-2916.2008.02507.x

    Article  CAS  Google Scholar 

  49. M. **ang, J. Gu, W. Ji, et al., Ceram. Int. 44, 8417 (2018). https://doi.org/10.1016/j.ceramint.2018.02.035

    Article  CAS  Google Scholar 

  50. L. Silvestroni, H.-J. Kleebe, W. G. Fahrenholtz, and J. Watts, Sci. Rep. 7, 40730 (2017). https://doi.org/10.1038/srep40730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. J. Zou, G.-J. Zhang, C.-F. Hu, et al., J. Am. Ceram. Soc. 95, 874 (2012). https://doi.org/10.1111/j.1551-2916.2011.05062.x

    Article  CAS  Google Scholar 

  52. D.-W. Ni, J.-X. Liu, and G.-J. Zhang, J. Eur. Ceram. Soc. 32, 3627 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.001

    Article  CAS  Google Scholar 

  53. J. Zou, G.-J. Zhang, Y.-M. Kan, and P.-L. Wang, Scr. Mater. 59, 309 (2008). https://doi.org/10.1016/j.scriptamat.2008.03.029

    Article  CAS  Google Scholar 

  54. J. Zou, G.-J. Zhang, Y.-M. Kan, and P.-L. Wang, J. Am. Ceram. Soc. 92, 2838 (2009). https://doi.org/10.1111/j.1551-2916.2009.03293.x

    Article  CAS  Google Scholar 

  55. Y. Wang, B. Ma, L. Li, and L. An, J. Am. Ceram. Soc. 95, 374 (2012). https://doi.org/10.1111/j.1551-2916.2011.04945.x

    Article  CAS  Google Scholar 

  56. C. Peng, X. Gao, M. Wang, et al., Appl. Phys. Lett. 114, 011905 (2019). https://doi.org/10.1063/1.5054954

    Article  CAS  Google Scholar 

  57. O. Cedillos-Barraza, S. Grasso, N. Al Nasiri, et al., J. Eur. Ceram. Soc. 36, 1539 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.009

    Article  CAS  Google Scholar 

  58. L. Feng, J.-M. Kim, S.-H. Lee, and S.-J. Park, J. Am. Ceram. Soc. 99, 1129 (2016). https://doi.org/10.1111/jace.14144

    Article  CAS  Google Scholar 

  59. C. Zhang, A. Gupta, S. Seal, et al., J. Am. Ceram. Soc. 100, 1853 (2017). https://doi.org/10.1111/jace.14778

    Article  CAS  Google Scholar 

  60. V. V. Kurbatkina, E. I. Patsera, E. A. Levashov, and A. N. Timofeev, Ceram. Int. 44, 4320 (2018). https://doi.org/10.1016/j.ceramint.2017.12.024

    Article  CAS  Google Scholar 

  61. C. Agte and H. Alterthum, Z. Techn. Phys., No. 6, 182 (1930).

  62. R. A. Andrievskii, N. S. Strel’nikova, N. I. Poltoratskii, et al., Sov. Powder Metall. 6, 65 (1967). https://doi.org/10.1007/BF00773385

    Article  Google Scholar 

  63. A. I. Savvatimskiy, S. V. Onufriev, and S. A. Muboyadzhyan, J. Eur. Ceram. Soc. 39, 907 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.030

    Article  CAS  Google Scholar 

  64. C. Zhang, A. Loganathan, B. Boesl, and A. Agarwal, Coatings 7, Article 111 (2017). https://doi.org/10.3390/coatings7080111

  65. C. Zhang, B. Boesl, and A. Agarwal, Ceram. Int. 3, 14798 (2017). https://doi.org/10.1016/j.ceramint.2017.07.227

    Article  CAS  Google Scholar 

  66. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 1483 (2016). https://doi.org/10.1134/S0036023616120172

    Article  CAS  Google Scholar 

  67. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., Russ. J. Inorg. Chem. 63, 1 (2018). https://doi.org/10.1134/S0036023618010187

    Article  CAS  Google Scholar 

  68. E. P. Simonenko, N. P. Simonenko, D. V. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 1649 (2016). https://doi.org/10.1134/S0036023616130039

    Article  CAS  Google Scholar 

  69. V. G. Sevast’yanov, E. P. Simonenko, N. A. Ignatov, et al., Inorg. Mater. 46, 495 (2010). https://doi.org/10.1134/S0020168510050109

    Article  CAS  Google Scholar 

  70. V. G. Sevastyanov, E. P. Simonenko, N. A. Ignatov, et al., Russ. J. Inorg. Chem. 56, 661 (2011). https://doi.org/10.1134/S0036023611050214

    Article  CAS  Google Scholar 

  71. E. P. Simonenko, N. A. Ignatov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 56, 1681 (2011). https://doi.org/10.1134/S0036023611110258

    Article  CAS  Google Scholar 

  72. E. P. Simonenko, N. P. Simonenko, Yu. S. Ezhov, et al., Phys. Atom. Nucl. 78, 1357 (2015). https://doi.org/10.1134/S106377881512011X

    Article  CAS  Google Scholar 

  73. E. P. Simonenko, N. P. Simonenko, M. I. Petrichko, et al., Russ. J. Inorg. Chem. 63, 1317 (2019). https://doi.org/10.1134/S0036023619110196

  74. F. M. Spiridonov, M. N. Mulenkova, V. I. Tsyrel’nikov, and L. N. Komissarova, Zh. Neorg. Khim. 26, 922 (1981).

    Google Scholar 

  75. H. Holleck, J. Nucl. Mater. 21, 14 (1967). https://doi.org/10.1016/0022-3115(67)90724-6

    Article  CAS  Google Scholar 

  76. R. W. G. Wyckoff, Cryst. Struct. 1, 85 (1963).

    Google Scholar 

  77. W. Wong-Ng and C. Hubbard, Powder Diffr. 2, 242 (1987). https://doi.org/10.1017/S0885715600012884

    Article  CAS  Google Scholar 

  78. T. Kawamura, Mineral. J. 4, 333 (1965). https://doi.org/10.2465/minerj1953.4.333

    Article  CAS  Google Scholar 

  79. H. U. Hummel, R. Fackler, and P. Remmert, Chem. Ber. 125, 551 (1992). https://doi.org/10.1002/cber.19921250304

    Article  CAS  Google Scholar 

  80. H. Jehn and E. Olzi, J. Less-Common Met. 27, 297 (1972). https://doi.org/10.1016/0022-5088(72)90062-8

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Scientific Foundation (project no. 17-73-20181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Lysenkov, A.S. et al. Reactive Hot Pressing of HfB2–SiC–Ta4HfC5 Ultra-High Temperature Ceramics. Russ. J. Inorg. Chem. 65, 446–457 (2020). https://doi.org/10.1134/S0036023620030146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620030146

Keywords:

Navigation