Log in

New Molecular Chemosensors Based on Niobium(V) 5,10,15,20-(Tetra-4-tert-butylphenyl)porphine for Detection of VOCs

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Reactions of pyridine (Py) with (5,10,15,20-(tetra-4-tert-butylphenyl)porphinato)trichloroniobium(V) (Nb(Cl)3TtBuPP) and H+-bonded Nb(Cl)3TtBuPP (Nb(Cl)3TtBuPP···H+···Cl) in toluene have been studied using spectroscopy (UV-vis, IR, 1H NMR, mass spectrometry, fluorescence), thermodynamics and kinetics. The process is a system of consecutive two- and one-way reactions of the two pyridine molecules bonding; the nature of this interactions is determined by the chemical structure of the initial niobium(V) porphyrin. The reactions have been completely quantitatively described, and the intermediate and final products spectral parameters used for the product chemical structure confirmation have been determined. It has been demonstrated that Nb(Cl)3TtBuPP and Nb(Cl)3TtBuPP···H+···Cl are good candidates for use as optical and fluorescent chemosensors of VOCs (volatile organic compounds) and nitrogenous bases—building blocks of pharmaceuticals, food components, and environmental pollutants—with the following parameters: the stability constant of the complex with pyridine K = (1.99 ± 0.3) × 104 L2/mol2 and (2.8 ± 0.5) × 102 L/mol, relative optical response A = 0.91 and 0.35, detection limit of Py 1.74 × 10–3 and 4.05 × 10–4 mol/L, respectively. The results are applicable for use in the design of dye-sensitized solar cells (DSSCs) since the reaction studied is a model for self-assembly of donor–acceptor systems based on metalloprorphyrins and pyridyl derivatives of carbon nanoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Ziolek and I. Sobczak, Catal. Today 285, 211 (2017). https://doi.org/10.1016/j.cattod.2016.12.013

    Article  CAS  Google Scholar 

  2. C. J. Carmalt, C. W. Dinnage, I. P. Parkin, et al., Inorg. Chem. 41, 3668 (2002). https://doi.org/10.1021/ic020097l

    Article  CAS  PubMed  Google Scholar 

  3. U. J. Kilgore, J. Tomaszewski, H. Fan, et al., Organometallics 26, 6132 (2007). https://doi.org/10.1021/om7008233

    Article  CAS  Google Scholar 

  4. T. Matsuo and H. Kawaguchi, Inorg. Chem. 41, 6090 (2002). https://doi.org/10.1021/ic025882c

    Article  CAS  PubMed  Google Scholar 

  5. D. Bayot and M. Devillers, Coord. Chem. Rev. 250, 2610 (2006). https://doi.org/10.1016/j.ccr.2006.04.011

    Article  CAS  Google Scholar 

  6. R. W. Berg, Coord. Chem. Rev. 113, 1 (1992).

    Article  CAS  Google Scholar 

  7. T. Poursaberi, M. R. Ganjali, and M. Hassanisadi, Talanta 101, 128 (2012).

    Article  CAS  Google Scholar 

  8. Yuan Lv-Bing, He Yan-**, Zhang Lei, et al., Inorg. Chem. 57, 4226 (2018). https://doi.org/10.1021/acs.inorgchem.7b03265

    Article  CAS  Google Scholar 

  9. G. R. Morello and T. R. Cundari, Organometallics 35, 3624 (2016). https://doi.org/10.1021/acs.organomet.6b00679

    Article  CAS  Google Scholar 

  10. J. E. Anderson, Y. H. Liu, R. Guilard, et al., Inorg. Chem. 25, 3786 (1986). https://doi.org/10.1021/ic00241a017

    Article  CAS  Google Scholar 

  11. E. W. Y. Wong, C. J. Walsby, T. Storr, et al., Inorg. Chem. 49, 3343 (2010). https://doi.org/10.1021/ic902409n

    Article  CAS  PubMed  Google Scholar 

  12. Lee. Hosoowi, Hong. Kyeong-Im, and Jang. Woo-Dong, Coord. Chem. Rev. 354, 46 (2018). https://doi.org/10.1016/j.ccr.2017.06.008

    Article  CAS  Google Scholar 

  13. J. F. Callan, A. P. de Silva, and D. C. Magri, Tetrahedron 61, 8551 (2005).

    Article  CAS  Google Scholar 

  14. Tiening **, Junchao Zhou, Hao-Yu Greg Lin, et al., Anal. Chem. 91, 817 (2019). https://doi.org/10.1021/acs.analchem.8b03004

    Article  CAS  PubMed  Google Scholar 

  15. A. Colombelli, M. G. Manera, and V. Borovkov, Sens. Actuators B: Chem. 246, 1039 (2017). https://doi.org/10.1016/j.snb.2017.01.192

    Article  CAS  Google Scholar 

  16. T. N. Lomova, M. E. Klyueva, and B. D. Berezin, Russ. J. Chem. Chem. Technol. 31, 75 (1988).

    CAS  Google Scholar 

  17. M. Y. Tipugina and T. N. Lomova, Russ. J. Phys. Chem. 76, 567 (2002).

    Google Scholar 

  18. T. N. Lomova, E. V. Motorina, E. N. Ovchenkova, et al., Russ. Chem. Bull. 56, 660 (2007). https://doi.org/10.1007/s11172-007-0105-1

    Article  CAS  Google Scholar 

  19. E. V. Motorina, E. G. Mozhzhukhina, and T. N. Lomova, J. Struct. Chem. 59, 1880 (2018). https://doi.org/10.1134/S0022476618080164

    Article  CAS  Google Scholar 

  20. E. V. Motorina, T. N. Lomova, and M. V. Klyuev, Mendeleev Commun. 28, 426 (2018). https://doi.org/10.1016/j.mencom.2018.07.029

    Article  CAS  Google Scholar 

  21. Y. Matsuda and Y. Murakami, Coord. Chem. Rev. 92, 157 (1988).

    Article  CAS  Google Scholar 

  22. T. N. Lomova, Theoretical and Experimental Methods of Solution Chemistry (Problems of Solution Chemistry) (Prospekt, Moscow, 2011) [in Russian].

    Google Scholar 

  23. T. N. Lomova, Axially Coordinated Metalloporphyrins in Science and Practice (Krasand, Mooscow, 2018) [in Russian].

  24. G. F. Bol’shakov and E. A. Glebovskaya, Tables of Infrared Frequencies of Heteroorganic Compounds (Khimiya, Leningrad, 1968) [in Russian].

    Google Scholar 

  25. A. V. Garmash and N. M. Sorokina, Metrological Foundations of Analytical Chemistry (Moscow, 2017) [in Russian].

    Google Scholar 

  26. V. I. Dvorkin, Metrology and Quality Assurance of Quantitative Chemical Analysis (Khimiya, Moscow, 2001) [in Russian].

    Google Scholar 

  27. Electronic Resource, Limit of Detection, Limit of Quantification, and Analyte Concentration Limits. https://studref.com/504076/matematika_himiya_fizik/ predel_obnaruzheniya_predel_opredeleniya_graniny_opredelyaemyh_soderzhaniy

  28. A. D. Dubonosov, A. V. Tsukanov, I. E. Tolpygin, et al., Bull. South. Sci. Center 9, 70 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.G. Bichan and Yu.A. Gubarev for their help with the experiment.

The physicochemical experiment was performed on the equipment of the Upper Volga Regional Center for Physicochemical Research.

Funding

This work was carried out in accordance with the Program of State Academies of Sciences (topic no. 0092-2014-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Lomova.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motorina, E.V., Lomova, T.N., Mozhzhukhina, E.G. et al. New Molecular Chemosensors Based on Niobium(V) 5,10,15,20-(Tetra-4-tert-butylphenyl)porphine for Detection of VOCs. Russ. J. Inorg. Chem. 64, 1538–1547 (2019). https://doi.org/10.1134/S0036023619120106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619120106

Keywords:

Navigation