Log in

Energy spectrum and optical properties of C60 fullerene within the Hubbard model

  • Theory of Metals
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The anticommutative Green’s functions and the energy spectrum of fullerene C60 have been calculated using the Hubbard model in the mean-field approximation. Based on the obtained energy spectrum, the interpretation of the experimentally observed bands of optical absorption has been proposed and the parameters of this fullerene, by which it is characterized in the Hubbard model have been calculated. The results agree fairly well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, SC. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene, Nature 318, 162–163 (1985).

  2. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).

    Google Scholar 

  3. E. Huckel, “Zur Quantentheorie der Doppelbindung,” Z. Phys. 69, 423–456 (1930).

    Article  Google Scholar 

  4. R. C. Haddon, L. E. Brus, and K. Raghavachari, “Electronic structure and bonding in icosahedral C60,” Chem. Phys. Lett. 125, 459–464 (1986).

    Article  Google Scholar 

  5. P. W. Fowler and J. Woolrich, “p-systems in three dimensions,” Chem. Phys. Lett. 127, 78–83 (1986).

    Article  Google Scholar 

  6. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Fresselhaus, “Electronic structure of graphene tubules based on C60,” Phys. Rev. B: Condens. Matter 46, 1804–1811 (1992).

    Article  Google Scholar 

  7. A. A. Levin, Introduction into Quantum Chemistry of Solid (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  8. G. Stollhoff, “Anomalous electron-lattice coupling in C60,” Phys. Rev. B: Condens. Matter 44, 10998–11000 (1991).

    Article  Google Scholar 

  9. R. O. Zaitsev, “On the superconductivity of planar carbon compounds,” JETP Lett. 94, 206–212 (2011).

    Article  Google Scholar 

  10. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. Roy. Soc. London, A 276, 238–257 (1963).

    Article  Google Scholar 

  11. R. O. Zaitsev, “Superconductivity in s-type carbon compounds,” JETP Lett. 95, 380–385 (2012).

    Article  Google Scholar 

  12. G. S. Ivanchenko and N. G. Lebedev, “Electrical conductivity of double-walled carbon nanotubes in the framework of the Hubbard model,” Phys. Solid State 49, 189–196 (2007).

    Article  Google Scholar 

  13. A. V. Silant’ev, “Study of nanosystems in the framework of the Hubbard model,” Izv. Vuzov. Povolzh. Reg. Fiz.-Mat. Nauki, No. 4, 214–226 (2012).

    Google Scholar 

  14. A. V. Silant’ev, “Effect of deformation on the energetic spectrum of C60 fullerene,” Izv. Vuzov. Povolzh. Reg. Fiz.-Mat. Nauki, No. 1, 135–143 (2013).

    Google Scholar 

  15. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Magnetism of Itinerant Electrons (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  16. A. M. Oles, “Antiferromagnetism and correlation of electrons in transition metals,” Phys. Rev. B: Condens. Matter 28, 327–339 (1983).

    Article  Google Scholar 

  17. W. Shumacher, “On the influence of the magnetic ordering on thermodynamic and electrical properties in the Hubbard model,” Phys. Status Solidi B 120, 621–629 (1983).

    Article  Google Scholar 

  18. D. N. Zubarev, “Double-time Green functions in statistical physics,” Phys.-Usp. 3, 320–345 (1960).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Non-relativistic Theory (Nauka, Moscow, 1973; Pergamon, New York, 1977).

    Google Scholar 

  20. E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York, 1959; Inostrannaya Literature; Moscow).

  21. A. V. Silant’ev, “A dimer in the extended Hubbard model,” Russ. Phys. J. 57, 1491–1502 (2015).

    Article  Google Scholar 

  22. A. V. Silant’ev, “Dimer in Hubbard model,” Izv. Vuzov. Povolzh. Reg. Fiz.-Mat. Nauki, No. 1, 168–182 (2015).

    Google Scholar 

  23. A. V. Silant’ev, “Research of nanosystems in the Hubbard model in approximation of static fluctuations,” Izv. Vuzov. Povolzh. Reg. Fiz.-Mat. Nauki, No. 2, 164–175 (2015).

    Google Scholar 

  24. R. Hesper, L. H. Tjeng, and G. A. Sawatzky, “Strongly reduced band gap in a correlated insulator in close proximity to a metal,” Europhys. Lett. 40, 177–182 (1997).

    Article  Google Scholar 

  25. S. Saito and A. Oshiyama, “Cohesive mechanism and energy bands of solid C60,” Phys. Rev. Lett. 66, 2637–2640 (1991).

    Article  Google Scholar 

  26. J. V. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. Kroll, N. Troullier, R. E. Haufler, and R. E. Smalley, “Electronic structure of solid C60. Experiment and theory,” Phys. Rev. Lett. 66, 1741–1744 (1991).

    Article  Google Scholar 

  27. H. Yasumatsu, T. Kondow, H. Kitagawa, K. Tabayashi, and K. Shobatake, “Absorption spectrum of C60 in the gas phase: Autoionization via core-excited Rydberg states,” J. Chem. Phys. 104, 899–902 (1996).

    Article  Google Scholar 

  28. G. Zimmerman and A. L. Smith, Chemical Properties of the Fullerenes (Drexel Univ., Philadelphia, 1993).

    Google Scholar 

  29. H. Ajie, M. M. Alvarez, S. J. Anz, R. D. Beck, F. Diederich, K. Fostiropoulos, D. R. Huffman, W. Kratschmer, Y. Rubin, K. E. Schriver, D. Sensharma, and R. L. Whetten, “Characterization of the soluble allcarbon molecules C60 and C70,” J. Phys. Chem. 94, 8630–8633 (1990).

    Article  Google Scholar 

  30. A. V. Nikolaev and B. N. Plakhutin, “C60 fullerene as a pseudoatom of icosahedral symmetry,” Russ. Chem. Rev. 79, 729–755 (2010).

    Article  Google Scholar 

  31. S. Leach, M. Vervolet, A. Despres, E. Breheret, J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor, and D. R. M. Walton, “Electronic spectra and transitions of the fullerene C60,” Chem. Phys. 160, 451–466 (1992).

    Article  Google Scholar 

  32. I. F. Torrente, K. J. Franke, and J. I. Pascual, “Spectroscopy of C60 single molecules: The role of screening on energy level alignment,” J. Phys.: Condens. Matter 2, 1–11 (2008).

    Google Scholar 

  33. J. M. de la Vega, “The absorption spectrum of C60 in N-hexane solution revisited: Fitted experiment and TDDFT/PCM calculations,” Chem. Phys. Lett. 593, 72–76 (2014).

    Article  Google Scholar 

  34. G. Gensterblum, J. J. Pireaux, P. A. Thiry, R. Caudano, J. P. Vigneron, Ph. Lambin, A. A. Lucas, and W. Kratschmer, “High-resolution electron-energy-loss spectroscopy of thin films of C60 on Si (100),” Phys. Rev. Lett. 67, 2171–2176 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Additional information

Original Russian Text © A.V. Silant’ev, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 1, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. Energy spectrum and optical properties of C60 fullerene within the Hubbard model. Phys. Metals Metallogr. 118, 1–9 (2017). https://doi.org/10.1134/S0031918X16100112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16100112

Keywords

Navigation