Log in

Nuclear magnetic resonance in manganites

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A brief survey of results concerning the study of manganites by the method of nuclear magnetic resonance (NMR) is presented. Experiments in which the nuclei of the majority of the elements that enter into the structural formulas of the manganites have been used as the local probes are considered. Primary attention is paid to the application of this local method for investigating the microscopic phase separation based on the data of the 55Mn NMR, orbital ordering in LaMnO3 based on the data of the 17O NMR, and low-frequency spin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Goodenough, “Theory of the role of covalence in the perovskite-type manganites (La, M(II)]MnO3,” Phys. Rev. 100, 564–573 (1955).

    Article  Google Scholar 

  2. E. O. Wollan and W. C. Koehler, “Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [LaxCa(1 − x)]MnO3,” Phys. Rev. 100, 545–563 (1955).

    Article  Google Scholar 

  3. A. Urushibara, Y. Morimoto, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, “Transition and giant magnetoresistance in La1 − x SrxMnO3,” Phys. Rev. B: Condens. Matter 51, 14103–14109 (1995).

    Article  Google Scholar 

  4. M. B. Salamon and M. Jaime, “Physics of manganites: Structure and transport,” Rev. Mod. Phys. 73, 583–626 (2001).

    Article  Google Scholar 

  5. E. Nagaev, “Colossal-magnetoresistance materials: Manganites and conventional ferromagnetic semiconductors,” Phys. Rep. 346, 387–531 (2001).

    Article  Google Scholar 

  6. C. Zener, “Interaction between the d shells in the transition metals,” Phys. Rev. 81, 440–444 (1951).

    Article  Google Scholar 

  7. P.-G. de Gennes, “Effects of double exchange in magnetic crystals,” Phys. Rev. 118, 141–154 (1960).

    Article  Google Scholar 

  8. Yu. A. Izyumov and Yu. N. Skryabin, “Double exchange model and the unique properties of the manganites,” Phys.-Usp. 44, 109–134 (2001).

    Article  Google Scholar 

  9. A. J. Milles, B. I. Shraiman, and R. Mueller, “Dynamic Jahn Teller effect and colossal magnetoresistance in La1 − x SrxMnO3,” Phys. Rev. Lett. 77, 175–178 (1996).

    Article  Google Scholar 

  10. E. L. Nagaev, “Lanthanum manganites and other giant-magnetoresistance magnetic conductors,” Phys.-Usp. 39, 781–805 (1996).

    Article  Google Scholar 

  11. J. M. D. Coey, M. Viret, and S. von Molnar, “Mixed-valence manganites,” Adv. Phys. 48, 167–293 (1999).

    Article  Google Scholar 

  12. E. Dagotto, T. Hotta, and A. Moreo, “Colossal magnetoresistance materials: The key role of phase separation,” Phys. Rep. 344, 1–153 (2001).

    Article  Google Scholar 

  13. N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, V. I. Ozhogin, and K. I. Kugel, “Metal-insulator transition induced by oxygen isotope exchange in the magnetoresistive perovskite manganites,” Nature 391, 159–161 (1998).

    Article  Google Scholar 

  14. V. V. Osipov and N. A. Viglin, “Spin injection and spin transport in a ferromagnet-semiconductor junction: Microwave emission and absorption,” J. Commun. Technol. Electron. 48, 548–558 (2003).

    Google Scholar 

  15. Yu. P. Sukhorukov, N. N. Loshkareva, A. V. Telegin, E. V. Mostovshchikova, V. L. Kuznetsov, A. P. Kaul’, O. Yu. Gorbenko, E. A. Gan’shina, and A. N. Vinogradov, “IR radiation modulator based on the effect of magnetotransmission in lanthanum manganite operating near room temperature,” Tech. Phys. Lett. 29, 904–906 (2003).

    Article  Google Scholar 

  16. T. Chatterji, F. Fauth, B. Ouladdiaf, P. Mandal, and B. Ghosh, “Volume collapse in LaMnO3 caused by an orbital order-disorder transition,” Phys. Rev. B: Condens. Matter Mater. Phys. 68, 052406 (2003).

    Article  Google Scholar 

  17. N. G. Bebenin, “Ferromagnetic manganites La1 − x CaxMnO3,” Phys. Met. Metallogr. 111, 236–252 (2011).

    Article  Google Scholar 

  18. N. N. Loshkareva and E. V. Mostovshchikova, “Electron-doped manganites based on CaMnO3,” Phys. Met. Metallogr. 113, 19–38 (2012).

    Article  Google Scholar 

  19. C. A. Randall, A. S. Bhalla, T. R. Shrout, and L. E. Cross, “Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order,” J. Mater. Res. 5, 829–834 (1990).

    Article  Google Scholar 

  20. G. Matsumoto, “Study of (La1 − x CaxMnO3,” J. Phys. Soc. Jpn. 29, 606–621 (1970).

    Article  Google Scholar 

  21. A. N. Pirogov, A. E. Teplykh, V. I. Voronin, A. E. Kar’kin, A. M. Balagurov, V. Yu. Pomyakushin, V. V. Sikolenko, A. N. Petrov, V. A. Cherepanov, and V. A. Filonova, “Ferro- and antiferromagnetic ordering in LaMnO3 − δ,” Phys. Solid State 41, 91–96 (1999).

    Article  Google Scholar 

  22. J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, and S. D. Bader, “Structural phase diagram of La1 − x SrxMnO3 − δ: Relationship to magnetic transport properties,” Phys. Rev. B: Condens. Matter 54, 6172–6183 (1996).

    Article  Google Scholar 

  23. V. E. Naish, “Models of crystal structures of doped lanthanum manganites,” Phys. Met. Metallogr. 85, 589–600 (1998).

    Google Scholar 

  24. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, “Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+,” Phys. Rev. 124, 373–384 (1961).

    Article  Google Scholar 

  25. T. Chatterji, F. Fauth, B. Ouladdiaf, P. Mangal, and B. Ghosh, “Volume collapse in LaMnO3 caused by an order-disorder transition,” Phys. Rev. B: Condens. Matter Mater. Phys. 68, 052406 (2003).

    Article  Google Scholar 

  26. S.-W. Cheong and H. Y. Hwang, “Ferromagnetism versus charge/orbital ordering in mixed-valent manganites,” in Colossal Magnetoresistance Oxides (Gordon and Breach, London, 1999).

    Google Scholar 

  27. J. Hemberger, A. Krimmel, T. Kurz, K. von Nidda, V. Yu. Ivanov, A. A, Mukhin, A. M. Balbashov, and A. Loidl, “Structural, magnetic, and electrical properties of single-crystalline La1−x SrxMnO3 (0.4 < x < 0.85),” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 094410 (2002).

    Article  Google Scholar 

  28. J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A. N. Moudden, L. Pinsard, and A. Revcolevschi, “Neutron-diffraction study of the Yahn-Teller transition in stoichiometric LaMnO3,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, R3189–R3192 (1998).

    Article  Google Scholar 

  29. M. Hennion, F. Moussa, G. Biotteau, J. Rodriques-Carvajal, L. Pinsard, and A. Revcolevschi, “Liquid-like spatial distribution of magnetic droplets revealed by neutron scattering in La1 − x CaxMnO3,” Phys. Rev. Lett. 81, 1957–1960 (1998).

    Article  Google Scholar 

  30. G. Allodi, R. De Renzi, G. Guidi, F. Licci, and M. Pieper, “Electronic phase separation in lanthanum manganites: Evidence from 55Mn NMR,” Phys. Rev. B: Condens. Matter 56, 6036–6045 (1997).

    Article  Google Scholar 

  31. F. Moussa, M. Hennion, G. Biotteau, J. Rodriques-Carvajal, L. Pinsard, and A. Revcolevschi, “Magnetic coupling induced by hole do** in perovskite La1 − x CaxMnO3. A neutron scattering study,” Phys. Rev. B: Condens Matter Mater. Phys. 60, 12299–12307 (1999).

    Article  Google Scholar 

  32. J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minaniue, H. Tagawa, M. Dokiya, H. Inaba, K. Naraya, T. Sasamoto, and T. Hashimoto, “Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1 − x SrxMnO3+ δ,” Solid State Ionics 129, 163–177 (2000).

    Article  Google Scholar 

  33. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Moscow: Inostrannaya Literature, 1963).

    Google Scholar 

  34. W. H. Jones, T. P. Graham, and R. G. Barnes, “Nuclear magnetic resonance line shapes resulting from the combined effects of nuclei quadrupole and anisotropic shift interactions,” Phys. Rev. 132, 1898–1909 (1963).

    Article  Google Scholar 

  35. A. C. Gossard and A. M. Portis, “Observation of nuclear magnetic resonance in a ferromagnet,” Phys. Rev. Lett. 3, 164–167 (1959).

    Article  Google Scholar 

  36. E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro- and Antiferromagnets (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  37. M. I. Kurkin and E. A. Turov, NMR in Magnetically Ordered Substances and Its Application (Moscow: Nauka, 1990) [in Russian].

    Google Scholar 

  38. A. S. Borovik-Romanov, Yu. M. Bun’kov, B. S. Dumesh, M. I. Kurkin, M. P. Petrov, and V. P. Chekmarev, “The spin echo in systems with a coupled electron-nuclear precession,” Phys.-Usp. 27, 235–255 (1984).

    Google Scholar 

  39. Dynamic and Kinetic Properties of Magnets, Ed. by S. V. Vonsovskii and E. A. Turov Nauka, (Moscow, 1986) [in Russian].

    Google Scholar 

  40. T. Kubo, H. Yasuoka, and A. Hirai, “55Mn NMR of the Mn3+ ion located in the B-site in manganese ferrite single crystal — anisotropic hyperfine field due to the local Jahn-Teller distortion,” J. Phys. Soc. Jpn. 26, 1094–1107 (1969).

    Article  Google Scholar 

  41. R. E. Watson and A. D. Freeman, “Hartry-Fock theory of electric and magnetic hyperfine interactions in atoms and magnetic compounds,” in Hyperfine Interactions, Ed. by A. J. Freeman and R. B. Frankel (Academic, New York, 1967; Moscow: Nauka, 1970).

    Google Scholar 

  42. A. Anane, C. Dupas, K. le Dang, J. P. Renard, P. Veillet, L. Pinsard, and A. Revcolevschi, “Enhancement of the magnetoresistance due to structural transition in Mgdoped perovskite Mn oxides,” Appl. Phys. Lett. 69, 1160–1162 (1996).

    Article  Google Scholar 

  43. A. M. de Leon-Guevara, P. Berthet, J. Berthot, J. Berthon, F. Millot, A. Revkolevschi, A. Anane, S. Dupas, K. le Gang, J. P. Renard, and P. Viellet, “Influence of controlled oxygen vacancies on the magnetotransport and magnetosructural phenomena in La0.85Sr0.15MnO3-δ single crystals,” Phys. Rev. B: Condens. Matter 56, 6031–6035 (1997).

    Article  Google Scholar 

  44. T. Kubo, H. Yasuoka and A. Hirai, “55Mn NMR of Mn4+ ions located at B-sites in ferrites,” J. Phys. Soc. Jpn. 21, 812–812 (1966).

    Article  Google Scholar 

  45. M. Belesi, G. Papavassiliou, M. Fardis, M. Pissas, J. E. Wegrowe, and C. Dimitropoulos, “NMR as a local probe of magnetic anisotropy: The possibility of orbital ordering and orbital liquid states in colossal magnetoresistance manganites,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 180406 (2001).

    Article  Google Scholar 

  46. G. Papavassiliou, M. Fardis, M. Belesi, T. G. Maris, G. Kallias, M. Pissas, and D. Niarchos, “55Mn NMR investigation of electronic phase separation in La1 − x CaxMnO3 for 0.2 < x < 0.5,” Phys. Rev. Lett. 63, 761–764 (2000).

    Article  Google Scholar 

  47. K. N. Mikhalev, S. A. Lekomtsev, A. P. Gerashchenko, V. E. Arkhipov, and Ya. M. Mukovskii, “(139La, 55Mn) NMR and magnetic susceptibility data on microscopic phase separation in La0.9MnO3 single crystal,” JETP Lett. 72, 599–602 (2000).

    Article  Google Scholar 

  48. A. Sidorenko, G. Allodi, G. M. Gestell, and R. de Renzi, “Comparison of 55Mn NMR, μ-SR and Neutron diffraction in LaMnO3,” J. Magn. Magn. Mater. 272–276, Part I, 108–109 (2004).

    Article  Google Scholar 

  49. K. N. Mikhalev, S. A. Lekomtsev, A. P. Gerashchenko, V. V. Serikov, I. A. Fogel’, and A. R. Kaul’, “Local peculiarities of the inhomogeneous magnetic state in LaMnO3 with deviations from stoichiometry as determined from 139La and 55Mn NMR data,” Phys. Met. Metallogr. 93, 322–330 (2002).

    Google Scholar 

  50. K. N. Mikhalev, NMR in oxides with strong electron-electron correlations, Doctoral (Phys.-Math.) Dissertation, Ekaterinburg, 2009.

    Google Scholar 

  51. K. N. Mikhalev, A. P. Gerashenko, A. Ananyev, S. Verkhovskii, V. V. Serikov, A. R. Kaul, E. V. Vladimirova, L. L. Surat, and B. V. Slobodin, “55Mn NMR study of La1 − x SrxMnO3: Phase separation,” EASTMAG-2001 Book of abstracts, Ekaterinburg, 2001, p. 119.

    Google Scholar 

  52. M. K. Gubkin, A. V. Zalesskii, V. G. Krivchenko, T. M. Perekalina, K. A. Khimich, and V. A. Chubarenko, “NMR in local fields at 139La nuclei in ferromagnetic manganites with a metal-semiconductor transition,” JETP Lett. 60, 57–60 (1994).

    Google Scholar 

  53. J. Dho, I. Kim, S. Lee, K. M. Kim, H. J. Lee, J. H. Jung, and T. W. Noh, “Zero-field 139La nuclear magnetic resonance in La1−x CaxMnO3 for 0.125 ≤ x 0.5,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 492–496 (1999).

    Article  Google Scholar 

  54. G. Allodi, R. de Renzi, F. Licci, and M. W. Pieper, “First order nucleation of charge ordered domains in La0.5Ca0.5MnO3 detected by 139La and 55Mn,” Phys. Rev. Lett. 81, 4736–4739 (1998).

    Article  Google Scholar 

  55. Y. Yoshinari, P. C. Hammel, J. D. Thompson, and S.-W. Cheong, “139La NMR evidence for sensitivity of local structure to magnetic field in La0.5Ca0.5MnO3,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 9275–9278 (1999).

    Article  Google Scholar 

  56. G. Allodi, R. de Renzi, and G. Guidi, “139La NMR in lanthanum manganites: Indication of the presence of magnetic polarons from spectra and nuclear relaxations,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 1024–1034 (1998).

    Article  Google Scholar 

  57. K. Kumagai, A. Iwai, Y. Tomioka, H. Kuwahara, Y. Tokura, and A. Yakubovskiii, “Microscopically homogeneous magnetic structure of La1 − x SrxMnO3 beyond the range of 0 ≤ x ≤ 0.1 observed by La NMR,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 97–99 (1999)

    Article  Google Scholar 

  58. G. Allodi, G. M. Cestelli, R. de Renzi, and L. Pinsard, “Ultraslow polaron dynamics in low-doped manganites from 139La NMR-NQR and muon spin rotation,” Phys. Rev. Lett. 87, 127206 (2001).

    Article  Google Scholar 

  59. G. Zhao, K. Conder, H. Keller, and K. A. Muller, “Giant oxygen isotope shift in the magnetoresistive perovskite La1 − x CaxMnO3 + y ,” Nature 381, 676–678 (1996).

    Article  Google Scholar 

  60. A. Shengelaya, G. Zhao, H. Keller, and K. A. Muller, “EPR evidence of Jahn-Teller polaron formation in La1 − x CaxMnO3 + y ,” Phys. Rev. Lett. 77, 5296–5299 (1996).

    Article  Google Scholar 

  61. K. E. Sakaie, C. P. Slichter, P. Lin, M. Jaime, and M. B. Salamon, “139La spectrum and spin-lattice relaxation measurements of La2/3Ca1/3MnO3 in the paramagnetic state,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 9382–9391 (1999).

    Article  Google Scholar 

  62. Th. Farrar and E. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods, (Academic, New York, 1971; Mir, Moscow, 1973).

    Google Scholar 

  63. S. A. Lekomtsev, K. N. Mikhalev, A. Yu. Yakubovskii, and A. R. Kaul’, “Features of low-temperature spin dynamics in manganite LaMnO3 according to 139La NMR data,” J. Exp. Theor. Phys. 102, 671–676 (2006)

    Article  Google Scholar 

  64. D. L. Huber, G. Alejandro, A. Caneiro, M. T. Causa, F. Prado, M. Tovar, S. B. Oseroff, “EPR linewidths in La1 − x CaxMnO3: 0 < x < 1,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 12155–12161 (1999).

    Article  Google Scholar 

  65. V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, and K. Conder, “Critical slowing down of longitudinal spin relaxation in La1 − x CaxMnO3,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 092405 (2001).

    Article  Google Scholar 

  66. Ch. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1980).

    Google Scholar 

  67. F. Raffa, M. Mali, J. Roos, D. Brinkmann, M. Mat- sumura, and K. Conder, “Low-energy excitation in the infinite-layer antiferromagnet Ca0.85Sr0.15CuO2,” Phys. Rev. B: Condens. Matter Mater. Phys. 58, 2724–2729 (1998).

    Article  Google Scholar 

  68. N. A. Babushkina, A. H. Taldenkov, L. M. Belova, L. A. Chistotina, O. Yu. Gorbenko, R. Kaul’, and D. I. Khomskii, “Partial 16O-18O isotope substitution and phase separation in (La0.25Pr0.75)0.7Ca0.3MnO3 manganite,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, R6081–R6084 (2000).

    Article  Google Scholar 

  69. A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, V. L. Aksenov, L. M. Belova, A. H. Taldenkov, A. V. Inuyshkin, P. Fischer, L. Keller., O. Yu. Gorbenko, A. R. Kaul’, and N. A. Babushkina, “Long-scale phase separation versus homogeneous magnetic state in (La1 − y Pry)0.7Ca0.3MnO3: A neutron diffraction study”, Phys. Rev. B: Condens. Matter Mater. Phys. 64, 024420 (2001).

    Article  Google Scholar 

  70. A. Yakubovskii, K. Kumagai, Yu. Furukawa, N. Babushkina, A. Taldenkov, A. Kaul’, and O. Yu.Gorbenko, “Field- and temperature-controlled magnetic phase separation in (La0.25Pr0.75)0.7Ca0.3MnO3 manganite as seen by La NMR and magnetization measurements,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 5337–5340 (2000).

    Article  Google Scholar 

  71. A. Gerashenko, Y. Furukawa, K. Kumagai, S. Verkhovskii, K. Mikhalev, and A. Yakubovskii, “Field-controlled magnetic phase separation in (La0.25Pr0.75)0.7Ca0.3MnO3 probed by 55Mn NMR,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 184410 (2003).

    Article  Google Scholar 

  72. S. V. Gudenko, A. Yu. Yakubovskii, O. Yu. Gorbenko, and A. R. Kaul’, “EPR study of the spin dynamics of the (La1 − y Pry)0.7Ca0.3MnO3 System,” Phys. Solid State 46, 2094–2102 (2004).

    Article  Google Scholar 

  73. K. Mikhalev, A. Pogudin, A. Yakubovskii, O. Gorbenko, A. Kaul, K. Kumagai, and Y. Furukawa, “The influence of the 16O → 18O isotope substitution on spin dynamics of (La0.25Pr0.75)0.7Ca0.3MnO3: 139La NMR data,” J. Magn. Magn. Mater. 300, 118–121 (2006).

    Article  Google Scholar 

  74. K. N. Mikhalev, I. E. Litvinov, Z. N. Nigamat’yanova, A. Yu. Yakubovskii, A. R. Kaul’, O. Yu. Gorbenko, K. Kumagai, and Yu. Furukava, Effect of the 16O → 18O isotopic substitution and a magnetic field on the spin dynamics in the (La0.25Pr0.75)0.7Ca0.3MnO3 manganite according to the 139La NMR data,” Bull. Russ. Acad. Sci.: Physics 71, 703–706 (2007).

    Article  Google Scholar 

  75. Cz. Kapusta, R. C. Riedi, M. Sikora, and M. R. Ibarra, “NMR probe of phase separation in electron-doped manganites,” Phys. Rev. Lett. 84, 4216–4219 (2000).

    Article  Google Scholar 

  76. A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, V. L. Aksenov, N. A. Babyshkina, L. M. Belova, A. N. Taldenkov, A. V. Inyushkin, P. Fischer, M. Gutmann, L. Keller, O. Yu. Gorbenko, and A. R. Kaul, “Effect of oxygen isotope substitution on the magnetic structure of (La0.25Pr0.75)0.7Ca0.3MnO3,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 383–387 (1999).

    Article  Google Scholar 

  77. A. Yakubovskii, A. Trokiner, S. Verkhovskii, A. Gerashenko, and D. Khomskii, “Charge and orbital ordering in Pr0.5Ca0.5MnO3 studied by 17O NMR,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 064414 (2003).

    Article  Google Scholar 

  78. A. Trokiner, S. Verkhovskii, A. Yakubovskii, K. Kumagai, S-W. Cheong, D. Khomskii, Y. Furukawa, J. S. Ahn, A. Pogudin, V. Ogloblichev, A. Gerashenko, K. Mikhalev, and Yu. Piskunov, “Charge-ordered state in half-doped Bi-based manganites studied by 17O and 209Bi NMR,” Phys. Rev. B: Condens. Matter Mater. Phys. 72, 054442 (2005).

    Article  Google Scholar 

  79. A. Trokiner, A. Yakubovskii, S. Verkhovskii, A. Gerashenko, and D. Khomskii, “17O NMR as a conclusive probe of charge-ordering models in half-doped manganites,” Phys. Rev. B: Condens. Matter Mater. Phys. 74, 092403 (2006).

    Article  Google Scholar 

  80. A. Trokiner, S. Verkhovskii, A. Yakubovskii, K. Kumagai, P. Monod, K. Mikhalev, A. Buzlukov, Y. Furukawa, N. Hur, and S.-W. Cheong, “Magnetic phase diagram of Nd0.5Sr0.5MnO3 probed by 17O NMR,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 134436 (2008).

    Article  Google Scholar 

  81. A. Trokiner, S. Verkhovskii, A. Yakubovskii, A. Gerashenko, P. Monod, K. Kumagai, K. Mikhalev, A. Buzlukov, Z. Litvinova, O. Gorbenko, A. Kaul, and M. Kartavtseva, “Magnetic polarons in antiferromagnetic CaMnO3 − x (x < 0.01) probed by 17O NMR,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 214414 (2009).

    Article  Google Scholar 

  82. S. Verkhovskii, A. Trokiner, A. Gerashenko, A. Yakubovskii, N. Medvedeva, Z. Litvinova, K. Mikhalev, and A. Buzlukov, “17O NMR evidence for vanishing of magnetic polarons in the paramagnetic phase of ceramic CaMnO3,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 144415 (2010).

    Article  Google Scholar 

  83. C. Chiorescu, J. L. Cohn, and J. J. Neumeier, “Impurity conduction and magnetic polarons in antiferromagnetic oxides,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 20404 (2007).

    Article  Google Scholar 

  84. A. Trokiner, S. Verkhovskii, A. Gerashenko, Z. Volkova, O. Anikeenok, K. Mikhalev, M. Eremin, and L. Pinsard-Gaudart, “Melting of the orbital order in LaMnO3 probed by NMR,” Phys. Rev. B: Condens. Matter Mater. Phys. 87, 125142 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mikhalev.

Additional information

Original Russian Text © K.N. Mikhalev, Z.N. Volkova, A.P. Gerashchenko, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 11, pp. 1204–1225.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhalev, K.N., Volkova, Z.N. & Gerashchenko, A.P. Nuclear magnetic resonance in manganites. Phys. Metals Metallogr. 115, 1139–1159 (2014). https://doi.org/10.1134/S0031918X14110052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14110052

Keywords

Navigation