Log in

Luminescence Excitation Spectroscopy of InAs/InGaAs/GaAs Quantum-Dot Arrays in the Temperature Range between 20 and 300 K

  • OPTICS OF LOW-DIMENSIONAL STRUCTURES, MESOSTRUCTURES, AND METAMATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Evolution of photoluminescence (PL) and PL excitation spectra in structures containing InAs/InGaAs/GaAs quantum-dot (QD) arrays is investigated in detail as a function of detection energy in the temperature range from 20 to 300 K. Detailed analysis of PL excitation spectra enabled identification of peaks corresponding to excited QD states. The transition probability from the latter to the ground state is higher than in states the transition probability from which to the ground state is low but considerably increases due to effective carrier relaxation involving LO phonons. The dependence of the energy difference of the spectral position of the peaks corresponding to the ground and excited states on ground-state energy (i.e., on QD size) that is characteristic for QDs is found to be violated at 140–160 K, the temperature at which transport of carriers between QDs becomes activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. V. Asryan and R. A. Suris, Semiconductors 38, 1 (2004).

    Article  ADS  Google Scholar 

  2. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, London, 1999).

    Google Scholar 

  3. S. A. Blokhin, A. V. Sakharov, A. M. Nadtochy, A. S. Pauysov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, N. A. Kaluzhniy, and M. Z. Shvarts, Semiconductors 43, 514 (2009).

    Article  ADS  Google Scholar 

  4. A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997).

    Article  ADS  Google Scholar 

  5. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, Nature (London, U.K.) 418, 612 (2002).

    Article  ADS  Google Scholar 

  6. V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 74, 2815 (1999).

    Article  ADS  Google Scholar 

  7. M. Grundmann, Nano-Optoelectronics: Concepts, Physics and Devices (Springer, Berlin, Heidelberg, New York, 2002).

    Book  Google Scholar 

  8. R. Heitz, A. Kalburge, Q. **e, M. Grudmann, P. Chen, A. Hoffmann, A. Madhukar, and D. Bimberg, Phys. Rev. B 57, 9050 (1998).

    Article  ADS  Google Scholar 

  9. Q. **e, P. Chen, A. Kalburge, T. R. Ramachandran, A. Nayfonov, A. Konkar, and A. Madhukar, J. Crys. Growth 150, 357 (1995).

    Article  Google Scholar 

  10. M. E. Ware, E. A. Stinaff, D. Gammon, M. F. Doty, A. S. Bracker, D. Gershoni, V. L. Korenev, S. C. Bădescu, Y. Lyanda-Geller, and T. L. Reinecke, Phys. Rev. Lett. 95, 177403 (2005).

    Article  ADS  Google Scholar 

  11. R. Heitz, O. Stier, I. Mukhametzhanov, A. Madhukar, and D. Bimberg, Phys. Rev. B 62, 11017 (2000).

    Article  ADS  Google Scholar 

  12. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. B 56, 10435 (1997).

    Article  ADS  Google Scholar 

  13. N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, M. V. Maksimov, E. S. Semenova, A. P. Vasil’ev, A. E. Zhukov, N. N. Ledentsov, V. M. Ustinov, and D. Bimberg, Semiconductors 39, 1188 (2005).

    Article  ADS  Google Scholar 

  14. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).

    Article  ADS  Google Scholar 

  15. Y. Wu, R. A. Suris, and L. V. Asryan, App. Phys. Lett. 102, 191102 (2013).

    Article  ADS  Google Scholar 

  16. A. P. Levanyuk and V. V. Osipov, Sov. Phys. Usp. 24, 187 (1981).

    Article  ADS  Google Scholar 

  17. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    Article  ADS  Google Scholar 

  18. R. Heitz, M. Veit, A. Kalburge, Q. **e, M. Grundmann, P. Chen, N. N. Ledentsov, A. Hoffmann, A. Madhukar, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, Phys. E (Amsterdam, Neth.) 2, 578 (1998).

  19. S. G. Petrosyan, V. V. Chaldyshev, and A. Ya. Shik, Sov. Phys. Semicond. 18, 980 (1984).

    Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education and Science of the Russian Federation, project no. 3.9787.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rybalko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Shumai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybalko, D.A., Nadtochiy, A.M., Maximov, M.V. et al. Luminescence Excitation Spectroscopy of InAs/InGaAs/GaAs Quantum-Dot Arrays in the Temperature Range between 20 and 300 K. Opt. Spectrosc. 128, 106–113 (2020). https://doi.org/10.1134/S0030400X20010208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20010208

Keywords:

Navigation