Log in

Excitation of Copper Vapor Lasers by Storage Capacitor Direct Discharge via High-Speed Photothyristors

  • LASER PHYSICS AND LASER OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The possibility of using a “pulsed fiber laser–photothyristor” optocoupler as a switch in the excitation schemes of copper vapor lasers (CVLs) has been investigated. It has been shown that such a switch has a nanosecond performance and is able to form monopolar and alternating current pulses through CVLs with a power of up to 10 MW and a repetition rate of tens of kilohertz when an electrical efficiency of the excitation circuit is more than 95%. A simple but very accurate model of a photothyristor is proposed, which can be used in full-scale CVL modeling programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. For this, it is necessary to reduce lifetime of nonequilibrium charge carriers τ to about 1 μs. The usual high-voltage photothyristors [18] are inoperable at such τ due to the low efficiency of the injection mechanism of conductivity modulation. However, a decrease in τ to 1 μs has practically no effect on the pulse characteristics of the photothyristor at photoionization almost uniform in crystal volume and current pulse duration <0.1 μs, but ensures its operation at frequencies up to tens of kilohertz.

REFERENCES

  1. Lasers on Self-Limited Transitions of Metal Atoms, Ed. by V. M. Batenin (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  2. A. G. Grigor’yants, M. A. Kazaryan, and N. A. Lyabin, Copper Vapor Lasers: Design, Characteristics and Applications (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  3. P. A. Bokhan, P. P. Gugin, Dm. E. Zakrevskii, M. A. Lavrukhin, M. A. Kazaryan, and N. A. Lyabin, Quantum Electron. 43, 715 (2013).

    Article  ADS  Google Scholar 

  4. T. B. Fogel’son, L. N. Breusova, and L. N. Vagin, Pulsed Hydrogen Thyratrons (Sov. Radio, Moscow, 1974) [in Russian].

    Google Scholar 

  5. A. A. Isaev and G. Yu. Lemmerman, Tr. FIAN 181, 164 (1987).

    Google Scholar 

  6. P. A. Bokhan, Dm. E. Zakrevskii, M. A. Lavrukhin, N. A. Lyabin, and A. D. Chursin, Quantum Electron. 46, 100 (2016).

    Article  ADS  Google Scholar 

  7. P. A. Bokhan, P. P. Gugin, Dm. E. Zakrevsky, and M. A. Lavrukhin, Tech. Phys. Lett. 38, 383 (2012).

    Article  ADS  Google Scholar 

  8. P. A. Bokhan, P. P. Gugin, Dm. E. Zakrevsky, and M. A. Lavrukhin, Tech. Phys. Lett. 39, 775 (2013).

    Article  ADS  Google Scholar 

  9. V. M. Aleksandrov, O. I. Buzhinskii, I. V. Grekhov, et al., Sov. J. Quantum Electron. 11, 111 (1981).

    Article  ADS  Google Scholar 

  10. V. M. Vole, V. M. Voronkov, I. V. Grekhov, et al., Sov. Tech. Phys. 26, 225 (1981).

    Google Scholar 

  11. A. S. Kyuregyan, Semiconductors 48, 1645 (2014).

    Article  ADS  Google Scholar 

  12. A. S. Kyuregyan, Semiconductors 51, 1208 (2017). https://doi.org/10.1134/S1063782617090123

    Article  ADS  Google Scholar 

  13. A. S. Kyuregyan, Semiconductors 51, 1214 (2017). https://doi.org/10.1134/S1063782617090135

    Article  ADS  Google Scholar 

  14. A. S. Kyuregyan, Semiconductors 53 (4), 519 (2019). https://doi.org/10.1134/S1063782619040183

  15. www.ipgphotonics.com/ru/products/lasers.

  16. A. X. Mnatsakanyan, G. V. Naidis, and N. P. Shternov, Sov. J. Quantum Electron. 8, 343 (1978).

    Article  ADS  Google Scholar 

  17. S. C. Glidden and H. D. Sanders, US Patent No. 8461620 B2 (2013).

  18. www.elvpr.ru/poluprovodnikprib/tiristory/flyers/TL_2017.pdf.

  19. T. T. Mnatsakanov, I. L. Rostovtsev, and N. I. Philatov, Solid-State Electron. 30, 579 (1987). https://doi.org/10.1016/0038-1101(87)90215-2

    Article  ADS  Google Scholar 

  20. V. M. Batenin, M. A. Kazaryan, V. T. Karpukhin, N. A. Lyabin, M. M. Malikov, and V. I. Sachkov, Opt. Atmos. Okeana 29, 112 (2016). https://doi.org/10.15372/AOO20160205

    Google Scholar 

  21. E. Brunt and L. Cheng, M. J. O’Loughlin, et al., Mater. Sci. Forum 821–823, 847 (2015). www.scientific.net/MSF.821-823.847

    Article  Google Scholar 

  22. J. L. Pack, C. S. Liu, D. W. Feldman, and L. A. Weaver, Rev. Sci. Instrum. 48, 1047 (1977). https://doi.org/10.1063/1.1135181

    Article  ADS  Google Scholar 

  23. A. E. Kirilov, V. N. Kukharev, and A. N. Soldatov, Sov. J. Quantum Electron. 9, 285 (1979).

    Article  ADS  Google Scholar 

  24. J. A. Piper, IEEE J. Quantum Electron. 14, 405 (1978).

    Article  ADS  Google Scholar 

  25. A. V. Sokolov and A. V. Sviridov, Sov. J. Quantum Electron. 11, 1019 (1981).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to S.N. Yurkov and T.T. Mnatsakanov, who provided the opportunity to simulate the switching process using the program “NVESTIGATION”, as well as N.M. Lepekhin and M.M. Malikov for fruitful discussion of a number of issues raised in this paper.

Funding

This work was executed with the support of the Russian Foundation for Basic Research, grant no. 16-08-01292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kyuregyan.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyuregyan, A.S. Excitation of Copper Vapor Lasers by Storage Capacitor Direct Discharge via High-Speed Photothyristors. Opt. Spectrosc. 126, 388–393 (2019). https://doi.org/10.1134/S0030400X19040131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19040131

Navigation