Log in

Second harmonic generation in nanoscale films of transition metal chalcogenides: Taking into account multibeam interference

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry–Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2–140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Lee et al., Nano Lett. 12, 3695 (2012).

    Article  ADS  Google Scholar 

  2. A. Splendiani et al., Nano Lett. 10, 1271 (2010).

    Article  ADS  Google Scholar 

  3. H. R. Gutierrez et al., Nano Lett. 13, 3447 (2013).

    Article  ADS  Google Scholar 

  4. D. Dumcenco et al., ACS Nano 9, 4611 (2015).

    Article  Google Scholar 

  5. Y. Li et al., Nano Lett. 13, 3329 (2013).

    Article  ADS  Google Scholar 

  6. D. J. Clark et al., Phys. Rev. B 90, 121409 (2014).

    Article  ADS  Google Scholar 

  7. C. Janisch et al., Sci. Rep. 4, 1 (2014).

    Article  Google Scholar 

  8. W. T. Hsu et al., ACS Nano 8, 2951 (2014).

    Article  Google Scholar 

  9. L. M. Malard et al., Phys. Rev. B 87 (20), 1 (2013).

    Article  Google Scholar 

  10. M. M. Benameur et al., Nanotecnology 22, 125706 (2011).

    Article  ADS  Google Scholar 

  11. H. Zhang et al., Sci. Rep. 5, 8440 (2015).

    Article  ADS  Google Scholar 

  12. H. Zhang et al., Appl. Phys. Lett. 101904, 7381 (2015).

    Google Scholar 

  13. S.-L. Li et al., ACS Nano 6 (8), 7381 (2012).

    Article  Google Scholar 

  14. J.-J. Li, Z.-Y. Li, and D.-Z. Zhang, Phys. Rev. E 75, 056606 (2007).

    Article  ADS  Google Scholar 

  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), Vol. 1.

    Google Scholar 

  16. B. Radisavljevic et al., Nature Nanotechnol. 6, 147 (2011).

    Article  ADS  Google Scholar 

  17. P. Blake et al., Appl. Phys. Lett. 91, 063124 (2007).

    Article  ADS  Google Scholar 

  18. I. Jung et al., Nano Lett. 7, 3569 (2007).

    Article  ADS  Google Scholar 

  19. E. Mishina et al., Appl. Phys. Lett. 106, 131901 (2015).

    Article  ADS  Google Scholar 

  20. E. D. Mishinaá N. E. Sherstyuk, A. P. Shestakova, S. D. Lavrov, S. V. Semin, A. S. Sigov, A. Mitioglu, S. Anghel, and L. Kulyuk, Semiconductors 49, 791 (2015).

    Article  ADS  Google Scholar 

  21. J. J. Dean and H. M. van Driel, Appl. Phys. Lett. 95, 261910 (2009).

    Article  ADS  Google Scholar 

  22. N. Bloembergen, Nonlinear Optics (Benjamin, Reading, MA, 1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Lavrov.

Additional information

Original Russian Text © S.D. Lavrov, A.V. Kudryavtsev, A.P. Shestakova, L. Kulyuk, E.D. Mishina, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 5, pp. 860–866.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrov, S.D., Kudryavtsev, A.V., Shestakova, A.P. et al. Second harmonic generation in nanoscale films of transition metal chalcogenides: Taking into account multibeam interference. Opt. Spectrosc. 120, 808–814 (2016). https://doi.org/10.1134/S0030400X16050180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16050180

Keywords

Navigation