Log in

The Influence of Adiponectin on Production of Apolipoproteins A-1 and E by Human Macrophages

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Adiponectin is an adipose tissue hormone affecting energy and lipoprotein metabolism and modulating inflammatory responses. However, the role of this adipokine in atherogenesis remains poorly understood. The aim of this study was to investigate the effect of adiponectin on the production of apolipoproteins (apo) A-1 and E by human macrophages (MP). The study was conducted on macrophage-like cells of the THP-1 cell line of two differentiation terms, 3 and 5 days (3d and 5d). Adiponectin (10 μg/mL) stimulated the expression of apoA-1 gene at the mRNA level in 5d MP, but not in 3d MP. The level of apoE mRNA in MP under the action of adiponectin was not affected. Adiponectin suppressed macrophage TNF gene expression, while it induced the expression of IL-10 gene in 5d MP. The secreted levels of apoA-1 and apoE proteins under the action of adiponectin in macrophages of both periods of differentiation remained unchanged, while the level of the surface apoA-1 protein in 5d MP was decreasing. Incubation of 5d MP with the PPARα nuclear receptor antagonist MK-886 or with the nuclear receptor LXR agonist TO-901317 resulted in cancellation of the stimulating effect of adiponectin on apoA-1 gene expression. These data indicate that adiponectin, in addition to its anti-inflammatory action, has a modulating effect on production of apoA-1 by macrophages. The latter is probably one of the mechanisms of the influence of this adipokine on atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Arita Y., Kihara S., Ouchi N., Takahashi M., Maeda K., Miyagawa J., Hotta K., Shimomura I., Nakamura T., Miyaoka K., Kuriyama H., Nishida M., Yamashita S., Okubo K., Matsubara K., Muraguchi M., Ohmoto Y., Funahashi T., Matsuzawa Y. 1999. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83.

    Article  CAS  PubMed  Google Scholar 

  2. Tanyanskii D.A., Firova E.M., Shatilina L.V., Denisenko A.D. 2008. Adiponectin: Reduced content in metabolic syndrome nd indenecentconnection with hypertriglyceridemia. Kardiologiya. 12, 20–25.

    Google Scholar 

  3. Razgil’dina N.D., Brovin D.L., Pobozheva I.A., Panteleeva A.A., Miroshnikova V.V., Belyaeva O.D., Baranova E.I., Polyakova E.A., Berkovich O.A., Pchelina S.N. 2018. The ADIPOQ gene expression in the subcutaneous and paraabdominal fat tissue of women with different degrees of obesity. Tsitologiya. 60, 531–535.

    Article  Google Scholar 

  4. Wang Y., Zheng A., Yan Y., Song F., Kong Q., Qin S., Zhang D. 2014. Association between HMW adiponectin, HMW-total adiponectin ratio and early-onset coronary artery disease in Chinese population. Atherosclerosis. 235, 392–397.

    Article  CAS  PubMed  Google Scholar 

  5. Wu Z.J., Cheng Y.J., Gu W.J., Aung L.H. 2014. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: A systematic review and meta-analysis. Metabolism. 63, 1157–1166.

    Article  CAS  PubMed  Google Scholar 

  6. Yamauchi T., Kamon J., Waki H., Imai Y., Shimozawa N., Hioki K., Uchida S., Ito Y., Takakuwa K., Matsui J., Takata M., Eto K., Terauchi Y., Komeda K., Tsunoda M., et al. 2003. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J. Biol. Chem. 278, 2461–2468.

    Article  CAS  PubMed  Google Scholar 

  7. Wang X., Chen Q., Pu H., Wei Q., Duan M., Zhang C., Jiang T., Shou X., Zhang J., Yang Y. 2016. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis. 15, 33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bruce C.R., Mertz V.A., Heigenhauser G.J., Dyck D.J. 2005. The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes. 54, 3154–3160.

    Article  CAS  PubMed  Google Scholar 

  9. Fu Y., Luo N., Klein R.L., Garvey W.T. 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46, 1369–1379.

    Article  CAS  PubMed  Google Scholar 

  10. Miller R.A., Chu Q., Le Lay J., Scherer P.E., Ahima R.S., Kaestner K.H., Foretz M., Viollet B., Birnbaum M.J. 2011. Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. J. Clin. Invest. 121, 2518–2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiao L., Zou C., van der Westhuyzen D.R., Shao J. 2008. Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes. 57, 1824–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsuura F., Oku H., Koseki M., Sandoval J. C., Yuasa-Kawase M., Tsubakio-Yamamoto K., Masuda D., Maeda N., Tsujii K., Ishigami M., Nishida M., Hirano K., Kihara S., Hori M., Shimomura I., Yamashita S. 2007. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. Biochem. Biophys. Res. Commun. 358, 1091–1095.

    Article  CAS  PubMed  Google Scholar 

  13. Neumeier M., Sigruener A., Eggenhofer E., Weigert J., Weiss T.S., Schaeffler A., Schlitt H.J., Aslanidis C., Piso P., Langmann T., Schmitz G., Schölmerich J., Buechler C. 2007. High molecular weight adiponectin reduces apolipoprotein B and E release in human hepatocytes. Biochem. Biophys. Res. Commun. 352, 543–548.

    Article  CAS  PubMed  Google Scholar 

  14. Ouchi N., Kihara S., Arita Y., Maeda K., Kuriyama H., Okamoto Y., Hotta K., Nishida M., Takahashi M., Nakamura T., Yamashita S., Funahashi T., Matsuzawa Y. 1999. Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein adiponectin. Circulation. 100, 2473–2476.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y., Wang X., Lau W. B., Yuan Y., Booth D., Li J.J., Scalia R., Preston K., Gao E., Koch W., Ma X.L. 2014. Adiponectin inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation Circ. Res. 114, 792–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Folco E.J., Rocha V.Z., López-Ilasaca M., Libby P. 2009. Adiponectin inhibits pro-inflammatory signaling in human macrophages independent of interleukin-10. J. Biol. Chem. 284, 25569–25575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohashi K., Parker J.L., Ouchi N., Higuchi A., Vita J.A., Gokce N., Pedersen A.A., Kalthoff C., Tullin S., Sams A., Summer R., Walsh K. 2010. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng X., Folco E.J., Shimizu K., Libby P. 2012. Adiponectin induces pro-inflammatory programs in human macrophages and CD4+ T cells. J. Biol. Chem. 287, 36896–36904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Stijn C.M., Kim J., Lusis A.J., Barish G.D., Tangirala R.K. 2015. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 29, 636–649.

    Article  CAS  PubMed  Google Scholar 

  20. Ouchi N., Kihara S., Arita Y., Nishida M., Matsuyama A., Okamoto Y., Ishigami M., Kuriyama H., Kishida K., Nishizawa H., Hotta K., Muraguchi M., Ohmoto Y., Yamashita S., Funahashi T., Matsuzawa Y. 2001. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 103, 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  21. Tian L., Luo N., Klein R.L., Chung B.H., Garvey W.T., Fu Y. 2009. Adiponectin reduces lipid accumulation in macrophage foam cells. Atherosclerosis. 202, 152–161.

    Article  CAS  PubMed  Google Scholar 

  22. Wang M., Wang D., Zhang Y., Wang X., Liu Y., **a M. 2013. Adiponectin increases macrophages cholesterol efflux and suppresses foam cell formation in patients with type 2 diabetes mellitus. Atherosclerosis. 229, 62–70.

    Article  CAS  PubMed  Google Scholar 

  23. Tsubakio-Yamamoto K., Matsuura F., Koseki M., Oku H., Sandoval J.C., Inagaki M., Nakatani K., Nakaoka H., Kawase R., Yuasa-Kawase M., Masuda D., Ohama T., Maeda N., Nakagawa-Toyama Y., Ishigami M., et al. 2008. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem. Biophys. Res. Commun. 375, 390–394.

    Article  CAS  PubMed  Google Scholar 

  24. Yamauchi T., Kamon J., Ito Y., Tsuchida A., Yokomizo T., Kita S., Sugiyama T., Miyagishi M., Hara K., Tsunoda M., Murakami K., Ohteki T., Uchida S., Takekawa S., Waki H., et al. 2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 423, 762–769.

    Article  CAS  PubMed  Google Scholar 

  25. Kemmerer M., Wittig I., Richter F., Brüne B., Namgaladze D. 2016. AMPK activates LXRα and ABCA1 expression in human macrophages. Int. J. Biochem. Cell Biol. 78, 1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Laffitte B.A., Repa J.J., Joseph S.B., Wilpitz D.C., Kast H.R., Mangelsdorf D.J., Tontonoz P. 2001. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl. Acad. Sci. U. S. A. 98, 507–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mogilenko D.A., Orlov S.V., Trulioff A.S., Ivanov A.V., Nagumanov V.K., Kudriavtsev I.V., Shavva V.S., Tanyanskiy D.A., Perevozchikov A.P. 2012. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J. 26, 2019–2030.

    Article  CAS  PubMed  Google Scholar 

  28. Shavva V.S., Mogilenko D.A., Nekrasova E.V., Trulioff A.S., Kudriavtsev I.V., Larionova E.E., Babina A.V., Dizhe E.B., Missyul B.V., Orlov S.V. 2018. Tumor necrosis factor α stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: Role of MAP-kinases, NF-κB, and nuclear receptors PPARα and LXRs. Mol. Cell. Biochem. 448, 211–223.

    Article  CAS  PubMed  Google Scholar 

  29. Major A.S., Dove D.E., Ishiguro H., Su Y.R., Brown A.M., Liu L., Carter K.J., Linton M.F., Fazio S. 2001. Increased cholesterol efflux in apolipoprotein AI (ApoAI)-producing macrophages as a mechanism for reduced atherosclerosis in ApoAI–/– mice. Arterioscler. Thromb. Vasc. Biol. 21, 1790–1795.

    Article  CAS  PubMed  Google Scholar 

  30. Fazio S., Babaev V.R., Burleigh M.E., Major A.S., Hasty A.H., Linton M.F. 2002. Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. J. Lipid Res. 43, 1602–1609.

    Article  CAS  PubMed  Google Scholar 

  31. Kockx M., Jessup W., Kritharides L. 2008. Regulation of endogenous apolipoprotein E secretion by macrophages. Arterioscler. Thromb. Vasc. Biol. 28, 1060–1067.

    Article  CAS  PubMed  Google Scholar 

  32. Yin K., Deng X., Mo Z.C., Zhao G.J., Jiang J., Cui L.B., Tan C.Z., We G.B., Fu Y., Tang C.K. 2011. Tristetraprolin-dependent post-transcriptional regulation of inflammatory cytokine mRNA expression by apolipoprotein A-I: Role of ATP-binding membrane cassette transporter A1 and signal transducer and activator of transcription 3. J. Biol. Chem. 286, 13834–13845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu Y., Kodvawala A., Hui D.Y. 2010. Apolipoprotein E inhibits toll-like receptor (TLR)-3- and TLR-4-mediated macrophage activation through distinct mechanisms. Biochem. J. 428, 47–54.

    Article  CAS  PubMed  Google Scholar 

  34. Galetto R., Albajar M., Polanco J.I., Zakin M.M., Rodríguez-Rey J.C. 2001. Identification of a peroxisome-proliferator-activated-receptor response element in the apolipoprotein E gene control region. Biochemical J. 357, 521–527.

    Article  CAS  Google Scholar 

  35. Duan H., Li Z., Mazzone T. 1995. Tumor necrosis factor-alpha modulates monocyte/macrophage apoprotein E gene expression. J. Clin. Invest. 96, 915–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. 2012. Primer3: New capabilities and interfaces. Nucleic Acids Res. 40, e115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mogilenko D.A., Dizhe E.B., Shavva V.S., Lapikov I.A., Orlov S.V., Perevozchikov A.P. 2009. Role of the nuclear receptors HNF4 alpha, PPAR alpha, and LXRs in the TNF alpha-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. Biochemistry. 48, 11950–11960.

    Article  CAS  PubMed  Google Scholar 

  38. Mogilenko D.A., Kudriavtsev I.V., Trulioff A.S., Shavva V.S., Dizhe E.B., Missyul B.V., Zhakhov A.V., Ischenko A.M., Perevozchikov A.P., Orlov S.V. 2012. Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. J. Biol. Chem. 287, 5954–5968.

    Article  CAS  PubMed  Google Scholar 

  39. Shavva V.S., Bogomolova A.M., Nikitin A.A., Dizhe E.B., Tanyanskiy D.A., Efremov A.M., Oleinikova G.N., Perevozchikov A.P., Orlov S.V. 2017. Insulin-mediated downregulation of apolipoprotein A-I gene in human hepatoma cell line HepG2: the role of interaction between FOXO1 and LXRβ transcription factors. J. Cell. Biochem. 118, 382–396.

    Article  CAS  PubMed  Google Scholar 

  40. Nekrasova E.V., Dan’ko E.V., Shavva V.S., Dizhe E.B., Oleinikova G.N., Orlov S.V. 2020. Effect of insulin on apolipoprotein A-1 gene expression in human macrophages. Med. Akad. Zh. 20 (1), 65–74.

    Google Scholar 

  41. Kasikara C., Doran A.C., Cai B., Tabas I. 2018. The role of non-resolving inflammation in atherosclerosis. J. Clin. Invest. 128, 2713–2723.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Starr T., Bauler T.J., Malik-Kale P., Steele-Mortimer O. 2018. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella typhimurium. PLoS One. 13, e0193601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lund M.E., To J., O’Brien B.A., Donnelly S. 2016. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J. Immunol. Meth. 430, 64–70.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.V. Kudryavtsev and M.K. Serebryakova (Department of Immunology of the IEM) for help with flow cytometry and A.D. Denisenko (Department of Biochemistry, IEM) for valuable critical comments.

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 15-04-07918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tanyanskiy.

Ethics declarations

In this work, we did not use humans or animals as objects of research. The authors declare they have no conflict of interest.

Additional information

Abbreviations: apo, apolipoprotein; BSA, bovine serum albumin; ELISA, enzyme-linked immunosorbent assay; LDL, low density lipoproteins; MP, macrophages; RT-PCR, Real-time reverse transcription PCR; AdipoR, adiponectin receptors; AMPK, AMP-activated protein kinase; DMSO, dimethyl sulfoxide; FBS, fetal bovine serum; IL-10, interleukin-10; LXR, liver X-receptors; PBS, phosphate buffered saline; PMA, phorbol-12-myristate-13-acetate; PPAR, peroxisome proliferator-activated receptor; TNF, tumor necrosis factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanyanskiy, D.A., Trulioff, A.S., Ageeva, E.V. et al. The Influence of Adiponectin on Production of Apolipoproteins A-1 and E by Human Macrophages. Mol Biol 55, 637–643 (2021). https://doi.org/10.1134/S0026893321030122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321030122

Keywords:

Navigation