Log in

The pH-Sensitive Potassium Channel TASK-1 Is a Chemosensor for Central Respiratory Regulation in Rats

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

TWIK-related acid-sensitive potassium channel-1 (TASK-1) is a “leak” potassium channel sensitive to extracellular protons. It contributes to setting the resting potential in mammalian neurons. TASK-1 channels are widely expressed in respiratory-related neurons in the central nervous system. Inhibition of TASK-1 by extracellular acidosis can depolarize and increase the excitability of these cells. Here we describe the distribution of TASK-1 in the rat brainstem and show that TASK-1 mRNAs are present in respiratory-related nuclei in the ventrolateral medulla, which have been proposed as neural substrates for central chemoreception in rats. After inhalation of 8% CO2 for 30 and 60 min, TASK-1 mRNA levels in positive-expression neurons were remarkably upregulated. Injection of the TASK-1 blocker anandamide (AEA) into the rat lateral cerebral ventricle, showed a significant excitement of respiratory at 10 min posttreatment, with a marked decrease in inspiratory and expiratory durations and an increased frequency of respiration. We suggest that TASK-1 channel may serve as a chemosensor for in central respiration and may contribute to pH-sensitive respiratory effects. TASK-1 channel might be an attractive candidate for sensing H+/CO2 in several respiratory-related nuclei in the brainstem. It is likely that TASK-1 participates in pH-sensitive chemical regulation in the respiratory center under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Laouafa S., Perrin-Terrin A.S., Jeton F., Elliot-Portal E., Tam R., Bodineau L., Voituron N., Soliz J. 2017. Pharmacological, but not genetic, alteration of neural Epo modifies the CO2/H+ central chemosensitivity in postnatal mice. Respir. Physiol. Neurobiol.242, 73‒79.

    Article  CAS  Google Scholar 

  2. Feldman J.L., Mitchell G.S., Nattie E.E. 2003. Breathing: Rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci.26, 239‒266.

    Article  CAS  Google Scholar 

  3. Koizumi H., Smerin S.E., Yamanishi T., Moorjani B.R., Zhang R., Smith J.C. 2010. TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro. J. Neurosci.30, 4273‒4284.

    Article  CAS  Google Scholar 

  4. Goldstein S.A., Wang K., Ilan N., Pausch M.H. 1998. Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J. Mol. Med.76, 13‒20.

    Article  CAS  Google Scholar 

  5. Talley E.M., Lei Q., Sirois J.E., Bayliss D.A. 2000. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron.25, 399‒410.

    Article  CAS  Google Scholar 

  6. Sirois J.E., Lei Q., Talley E.M., Bayliss D.A. 2000. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci.20, 6347–6354.

    Article  CAS  Google Scholar 

  7. Goldstein S.A., Bockenhauer D., O’Kelly I., Zilberberg N. 2001. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci.2, 175‒184.

    Article  CAS  Google Scholar 

  8. Patel A.J., and Honore E. 2001. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci.24, 339‒346.

    Article  CAS  Google Scholar 

  9. Lesage F. 2003. Pharmacology of neuronal background potassium channels. Neuropharmacology. 44, 1‒7.

    Article  CAS  Google Scholar 

  10. Czirjak G., Fischer T., Spat A., Lesage F., Enyedi P. 2000. TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol. Endocrinol.14, 863‒874.

    CAS  PubMed  Google Scholar 

  11. Maingret F., Patel A.J., Lazdunski M., Honore E. 2001. The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J.20, 47‒54.

    Article  CAS  Google Scholar 

  12. St John W.M., Wang S. 1977. Response of medullary respiratory neurons to hypercapnia and isocapnic hypoxia. J. Appl. Physiol.43, 812‒821.

    Article  Google Scholar 

  13. Washburn C.P., Bayliss D.A., Guyenet P.G. 2003. Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respir. Physiol. Neurobiol.138, 19‒35.

    Article  CAS  Google Scholar 

  14. Smith J.C., Ellenberger H.H., Ballanyi K., Richter D.W., Feldman J.L. 1991. Pre-Bötzinger complex: A brain-stem region that may generate respiratory rhythm in mammals. Science.254, 726‒729.

    Article  CAS  Google Scholar 

  15. Marchenko V., Koizumi H., Mosher B., Loshiya N., Tariq M.F., Bezdudnaya T.G., Zhang R.L., Molkov Y.I., Rybak I.A., Smith J.C. 2016. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within pre-Bötzinger and Bötzinger complexes. eNeuro.3(2), pii: ENEURO.0011-16.2016. https://doi.org/10.1523/ENEURO.0011-16.2016

  16. Glass L. 2001. Synchronization and rhythmic processes in physiology. Nature.410, 277.

    Article  CAS  Google Scholar 

  17. Pace R.W., Mackay D.D., Feldman J.L., Del Negro C.A. 2007. Role of persistent sodium current in mouse pre-Bötzinger complex neurons and respiratory rhythm generation. J. Physiol.580, 485‒496.

    Article  CAS  Google Scholar 

  18. Del Negro C.A., Koshiya N., Butera R.J, Smith J.C. 2002. Persistent sodium current, membrane properties and bursting behavior of pre-Bötzinger complex inspiratory neurons in vitro.J. Neurophysiol.88, 2242‒2250.

    Article  CAS  Google Scholar 

  19. Smith J.C., Butera R.J., Jr Koshiya N., Del Negro C., Wilson C.G., Johnson S.M. 2000. Respiratory rhythm generation in neonatal and adult mammals: The hybrid pacemaker-network model. Respir. Physiol.122 (2‒3), 131‒147.

    Article  CAS  Google Scholar 

  20. Muzerelle A., Scotto-Lomassese S., Bernard J.F., Soiza-Reilly M., Gaspar P. 2016. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct. Funct.221, 535‒561.

    Article  CAS  Google Scholar 

  21. Sowerby A., Ball A.S., Gray T.R.G., Newton P.C.D., Clark H. 2000. Elevated atmospheric [CO2] from a natural soda spring affects the initial mineralization rates of naturally senesced C3 and C4 leaf litter. Soil Biol. Biochem.32, 1323‒1327.

    Article  CAS  Google Scholar 

  22. Takakura A.C., Colombari E., Menani J.V., Moreira T.S. 2011. Ventrolateral medulla mechanisms involved in cardiorespiratory responses to central chemoreceptor activation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.300, R501‒R510.

    Article  CAS  Google Scholar 

  23. Strauss K.I., Barbe M.F., Marshall R.M. Raghupathi R., Mehta S., Narayan R.K. 2000. Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat. J. Neurotraum.17, 695‒711.

    Article  CAS  Google Scholar 

  24. Dean J.B., Lawing W.L., Millhorn D.E. 1987. CO2 degreases membrane conductance and depolarized neurons in the nucleus tractus solitarii. Exp. Brain Res.176, 656‒661.

    Google Scholar 

  25. Sanna E., Cuccheddu T., Serra M., Concas A., Biggio G. 1992. Carbon dioxide inhalation reduces the function of GABAA receptor in the rat brain. Eur. J. Pharmacol.216, 457-458.

    Article  CAS  Google Scholar 

  26. Bayliss D.A., Barhanin J., Gestreau C., Guyenet P.G. 2015. The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflügers Arch.467, 917‒929.

    Article  CAS  Google Scholar 

  27. Mulkey D.K., Talley E.M., Stornetta R.L., Siegel A.R., West G.H., Chen X., Sen N., Mistry A.M., Guyenet P.G., Bayliss D.A. 2007. TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J. Neurosci.27, 14049‒14058.

    Article  CAS  Google Scholar 

  28. Davidson T.L., Sullivan M.P., Swanson K.E., Adams J.M. 1993. Cl-replacement alters the ventilatory response to central chemoreceptor simulation. J. Appl. Physiol.74, 280‒285.

    Article  CAS  Google Scholar 

  29. Erlichman J.S., Cook A., Schwab M.C., Budd T.W., Leiter J.C. 2004. Heterogeneous patterns of pH regulation in glial cells in the dorsal and ventral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol.286, R289‒R302.

    Article  CAS  Google Scholar 

  30. Stornetta R.L., Sevigny C.P., Guyenet P.G. 2003. Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkaphalinergic phenotypes. J. Comp. Neurol.455, 113‒124.

    Article  CAS  Google Scholar 

  31. Inoue T., Nakayama K., Ihara Y., Tachikawa S., Nakamura S., Mochizuki A., Takahashi K., Lijima T. 2017. Coordinated control of the tongue during suckling-like activity and respiration. J. Oral Sci.59, 183‒188.

    Article  CAS  Google Scholar 

  32. Wang X., Guan R., Zhao X., Zhu D., Song N., Shen L. 2018. TASK1 and TASK3 are coexpressed with ASIC1 in the ventrolateral medulla and contribute to central chemoreception in rats. Front. Cell. Neurosci.12, 285.

    Article  CAS  Google Scholar 

  33. Zuperku E.J., Stucke A.G., Krolikowski J.G., Tomlinson J., Hopp F.A., Stuth E.A. 2019. Inputs to medullary respiratory neurons from a pontine subregion that controls breathing frequency. Resp. Physiol. Neurobiol. 265, 127‒140.

    Article  Google Scholar 

  34. Schwarzacher S.W., Smith J.C., Richter D.W. 1995. Pre-Bötzinger complex in the cat. J. Neurophysiol. 73, 1452‒1461.

    Article  CAS  Google Scholar 

  35. Enyedi P., Czirják G. 2010. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev.90, 559‒605.

    Article  CAS  Google Scholar 

  36. Buckler K.J., Williams B.A., Honore E. 2000. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol.525, 135‒142.

    Article  CAS  Google Scholar 

  37. Venglovecz V., Rakonczay Jr Z., Gray M.A., Hegyi P. 2015. Potassium channels in pancreatic duct epithelial cells: Their role, function and pathophysiological relevance. Pflügers Arch.467, 625‒640.

    Article  CAS  Google Scholar 

  38. Bayliss D.A., Talley E.M., Sirois J.E., Lei Q. 2001. TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respir. Physiol.129, 159‒174.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the Natural Science Foundation of China (nos. 31560269, 31601030, and 30960173) and the Foundation for High-level Talents of Shihezi University (no. RCZX201448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gao.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

AUTHOR CONTRIBUTIONS

QL, KW, and MX contributed equally to this work.

RG and QL designed the study; JZ and ZP performed the experiments; LW, YZ, CW and FM analyzed the data; KW and MX wrote the manuscript.

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q.Q., Wan, K.X., Xu, M.S. et al. The pH-Sensitive Potassium Channel TASK-1 Is a Chemosensor for Central Respiratory Regulation in Rats. Mol Biol 54, 402–411 (2020). https://doi.org/10.1134/S0026893320030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320030103

Keywords:

Navigation