Log in

Formation of organic acids by fungi isolated from the surface of stone monuments

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Capacity of the fungi isolated from the surface of stone monuments for acid formation was studied in cultures under various carbon sources and cultivation conditions. The composition of organic nutrients was adjusted according to the results of investigation of the surface layers from the monuments in urban environment. The primary soil formed at the surface of the stone monuments under urban conditions was shown to contain a variety of carbon and nitrogen sources and is a rich substrate for fungal growth. Oxalic acid was produced by fungi grown on media with various concentrations of sugars, sugar alcohols, and organic acids. Malic, citric, fumaric, and succinic acids were identified only at elevated carbohydrate concentrations, mostly in liquid cultures. Oxalic acid was the dominant among the acids produced by Aspergillus niger at all experimental setups. Unlike A. niger, the relative content of oxalic acid produced by Penicillium citrinum decreased at high carbohydrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zelenskaya, M.S. and Vlasov, D.Yu., Micromycetes on the monuments of the Tauric Chersonese national preserve (Sevastopol, Crimea), Mykol. Fitopatol., 2006, vol. 40, no. 5, pp. 370–376.

    Google Scholar 

  2. Gadd, G.M., Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation, Mycol. Res., 2007, no. 111, pp. 3–49.

    Google Scholar 

  3. Bogomolova, E.V., Kirtsideli, I.Yu., and Kovalenko, A.E., Investigation of the interaction between mycobiota of a stony substrate and micromycete communities from other ecological groups, Immunol., Allergol., Infektol., 2010, no. 1, p. 56.

    Google Scholar 

  4. Prieto, B., Aira, N., and Silva, B., Comparative study of dark patinas on granitic outcrops and buildings, Sci. Total Environ., 2007, no. 381, pp. 280–289.

    Google Scholar 

  5. Benzzi, K., Tanouti, B., Bouabdelli, M., Alvarez, A., Brianso, J.L., and Cherradi, F., Determination of the composition and the origin of the ochre brown patina on the monumental Bab Agnaou gate (Marrakech, Morocco), Environ. Geol., 2008, no. 53, pp. 1283–1288.

    Google Scholar 

  6. Pereira de Oliveira, B., de la Rosa, J.M., Miller, A.Z., Saiz-Jimenez, C., Gomez-Bolea, A., Sequeira, Braga, M.A., and Dionisio, A., An integrated approach to assess the origins of black films on a granite monument, Environ. Earth Sci., 2011, no. 63, pp. 1677–1690.

    Google Scholar 

  7. Rampazzi, L., Andreotti, A., Bonaduce, I., Colombini, M.P., Colombo, C., and Toniolo, L., Analytical investigation of calcium oxalate films on marble monuments, Talanta, 2004, vol. 63, no. 4, pp. 967–977.

    Article  PubMed  CAS  Google Scholar 

  8. Elshafei, A.M., Degradation of some sugars and sugar acids by the nonphosphorylated D-gluconate pathway in Aspergillus ustus, Acta Biotechnol., 1989, vol. 9, no. 5, pp. 485–489.

    Article  CAS  Google Scholar 

  9. Jennings, D.H., The Physiology of Fungal Nutrition, Cambridge: Cambridge Univ. Press, 2007.

    Google Scholar 

  10. Barinova, K.V., Vlasov, D.Yu., Shchiparev, S.M., Zelenskaya, M.S., Rusakov, A.V., and Frank-Kamenetskaya, O.V., Production of organic acid by micromycetes from stony substrates, Mikol. Fitopatol., 2010, vol. 44, no. 2, pp. 137–142.

    CAS  Google Scholar 

  11. Fomina, M., Hillier, S., Charnock, J.M., Melville, K., Alexander, I.J., and Gadd, G.M., Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica, Appl. Environ. Microbiol., 2005, vol. 71, no. 1, pp. 371–381.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Plassard, C. and Fransson, P., Regulation of low-molecular weight organic acid production in fungi, Fungal Biol. Rev., 2009, vol. 23, nos 1–2, pp. 30–39.

    Article  Google Scholar 

  13. Jones, D.L. and Darrah, P.R., Influx and efflux of organic acids across the root-soil interface of Zea mays L. and its implications in rhizosphere C flow, Plant Soil, 1995, no. 173, pp. 103–109.

    Google Scholar 

  14. Ghorbani, Y., Oliazadeh, M., Shahvedi, A., Roohi, R., and Pirayehgar, A., Use of some isolated fungi in biological leaching of aluminum from low grade bauxite, Afr. J. Biotechnol., 2007, vol. 6, no. 11, pp. 1284–1288.

    CAS  Google Scholar 

  15. Halket, J.M., Waterman, D., Przyborowska, A.M., Patel, R.K.P., Fraser, P.D., and Bramley, P.M., Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS, J. Exp. Bot., 2005, vol. 56, no. 410, pp. 219–243.

    Article  PubMed  CAS  Google Scholar 

  16. Suh, J.W., Lee, S.H., and Chung, B.C., GC-MS determination of organic acids with solvent extraction after cation-exchange chromatography, Clin. Chem., 1997, vol. 43, no. 12, pp. 2256–2261.

    PubMed  CAS  Google Scholar 

  17. Kubicek, C.P., The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger, Appl. Microbiol. Biotechnol., 1989, no. 3, pp. 553–558.

    Google Scholar 

  18. Hossain, M., Brooks, J.D., and Maddox, I.S., The effect of the sugar source on citric acid production by Aspergillus niger, Appl. Microbiol. Biotechnol., 1984, vol. 19, pp. 393–397.

    Article  CAS  Google Scholar 

  19. Singh, O.V., Sharma, A., and Singh, R.P., Optimisation of fermentation conditions for gluconic acid production by a mutant of Aspergillus niger, Indian J. Exp. Biol., 2001, no. 39, pp. 1136–1143.

    Google Scholar 

  20. Papagianni, M., Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling, Biotechnol. Adv., 2007, no. 25, pp. 244–263.

    Google Scholar 

  21. Munir, E., Yoon, J.J., Tokimatsu, T., Hattori, T., and Shimada, M., New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid, J. Wood Sci., 2001, vol. 47, pp. 368–373.

    Article  CAS  Google Scholar 

  22. Titorenko, V.I. and Sibirnyi, A.A., Carbon catabolite inactivation in yeasts, an important way of regulation at a post-translational level, Biopolim. Kletka, 1989, vol. 5, no. 3, pp. 23–38.

    CAS  Google Scholar 

  23. Magnuson, J.K. and Lasure, L.L., Organic acid production by filamentous fungi, in Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine, 2004, pp. 307–340.

    Chapter  Google Scholar 

  24. Hult, K. and Gatenbeck, S., Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternate, Eur. J. Biochem., 1978, vol. 88, pp. 607–612.

    Article  PubMed  CAS  Google Scholar 

  25. Velez, H., Glassbrook, N.J., and Daub, M.E., Mannitol metabolism in the phytopathogenic fungus Alternaria alternate, Fungal Genet. Biol., 2007, vol. 44, pp. 258–268.

    Article  PubMed  CAS  Google Scholar 

  26. Koivistoinen, O., Catabolism of biomass-derived sugars in fungi and metabolic engineering as a tool for organic acid production, Dr. Sci. Thesis, Helsinki: University of Helsinki, 8.11.2013.

    Google Scholar 

  27. Ramachandran, S., Fontanille, P., Pandey, A., and Larroche, C., Gluconic acid: properties, applications and microbial production, Food Technol. Biotechnol, 2006, vol. 44, no. 2, pp. 185–195.

    CAS  Google Scholar 

  28. Kubicek, C.P. Schreferl-Kunar, G., Wöhrer, W., and Röhr, M., Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger, Appl. Environ. Microbiol., 1988, no. 54, pp. 633–637.

    Google Scholar 

  29. Ruijter, G.J., van de Vondervoort, P.J.I., and Visser, J., Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese, Microbiology (UK), 1999, no. 145, pp. 2569.

    Google Scholar 

  30. Barinova, K.V., Shchiparev, S.M., Shavarda, A.L., and Vlasov, D.Yu., Effect of calcium carbonate on acidifying activity of micromycetes, Vestnik SPbGU, Ser. 3., 2010, no. 3, pp. 93–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sazanova.

Additional information

Original Russian Text © K.V. Sazanova, S.M. Shchiparev, D.Yu. Vlasov, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 5, pp. 525–533.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazanova, K.V., Shchiparev, S.M. & Vlasov, D.Y. Formation of organic acids by fungi isolated from the surface of stone monuments. Microbiology 83, 516–522 (2014). https://doi.org/10.1134/S002626171405021X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171405021X

Keywords

Navigation