Log in

The Nature of Halogen Dependence of 103Rh NMR Chemical Shift in Complex Anions cis-[X1X2Rh(CO)2] (X1, X2 = Cl, Br, I)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT calculations within the two-component quasirelativistic approach and further analysis of 103Rh NMR shielding (including the natural bond orbitals method) in a series of flat-square complex anions cis-[X1X2Rh(CO)2] (X1, X2 = Cl, Br, I) are used to determine the role of relativistic spin-orbit effects in 103Rh NMR shielding in these systems. Electron delocalization observed in these complexes provides the possibility of relativistic spin-orbit effects but complicates the interpretation of 103Rh NMR shielding in terms of chemically meaningful fragments of electronic system (lone pairs, chemical bonds).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Autschbach. In: High Resolution NMR Spectroscopy: Understanding Molecules and their Electronic Structures. Elsevier, 2013, 3, 69–117.

    Google Scholar 

  2. S. G. Kozlova, M. R. Ryzhikov, and V. A. Slepkov. J. Struct. Chem., 2016, 57, 238–256.

    Article  CAS  Google Scholar 

  3. M. Kaupp, O. L. Malkina, V. G. Malkin, and P. Pyykko. Chem. Eur. J., 1998, 4, 118–126.

    Article  CAS  Google Scholar 

  4. R. G. Kidd. Annu. Rep. NMR Spectr., 1980, 10(A), 1–79.

    Google Scholar 

  5. I. Saouli, S. Landron, B. Peric, A. Boutarfaia, C. Kouvatas, L. Le Pollès, J. Cuny, and R. Gautier. J. Struct. Chem., 2019, 60(3), 430–436.

    Article  Google Scholar 

  6. B. T. Heaton, C. Jacob, and S. Moffet. J. Organomet. Chem., 1993, 462, 347–352.

    Article  CAS  Google Scholar 

  7. M. A. Fedotov. J. Struct. Chem., 2016, 57, 563–613.

    Article  CAS  Google Scholar 

  8. I. V. Mirzaeva, D. A. Mainichev, and S. G. Kozlova. J. Phys. Chem. A, 2016, 120, 1944–1949.

    Article  CAS  PubMed  Google Scholar 

  9. P. Lazzeretti. Phys. Chem. Chem. Phys., 2016, 18, 11765–11771.

    Article  CAS  PubMed  Google Scholar 

  10. M. R. Ryzhikov and S. G. Kozlova. J. Struct. Chem., 2017, 58, 861–865.

    Article  CAS  Google Scholar 

  11. P. Pyykko. Theor. Chem. Acc., 2000, 103, 214–216.

    Article  CAS  Google Scholar 

  12. W. Kutzelnigg. Theor. Chim. Acta, 1988, 73, 173–200.

    Article  CAS  Google Scholar 

  13. S. K. Wolff and T. Ziegler. J. Chem. Phys., 1998, 109, 895–905.

    Article  CAS  Google Scholar 

  14. S. Moncho and J. Autschbach. Magn. Reson. Chem., 2010, 48, S76–S85.

    Article  CAS  PubMed  Google Scholar 

  15. J. Autschbach and S. Zheng. Magn. Reson. Chem., 2008, 46, S45–S55.

    Article  PubMed  Google Scholar 

  16. E. D. Glendening, C. R. Landis, and F. Weinhold. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 1–42.

    CAS  Google Scholar 

  17. A. Ramazani, M. Sheikhi, Y. Hanifehpour, P. A. Asiabi, and S. W. Joo. J. Struct. Chem., 2018, 59(3), 529–540.

    Article  CAS  Google Scholar 

  18. J. Autschbach. J. Chem. Phys., 2008, 128, 164112.

    Article  PubMed  Google Scholar 

  19. R. V. Viesser, L. C. Ducati, J. Autschbach, and C. F. Tormena. Phys. Chem. Chem. Phys., 2015, 17, 19315–19324.

    Article  CAS  PubMed  Google Scholar 

  20. ADF2017, SCM, Vrije Universiteit, Theoretical Chemistry: Amsterdam, The Netherlands, http://www.scm.com

  21. C. Adamo and V. Barone. J. Chem. Phys., 1999, 110, 6158–6170.

    Article  CAS  Google Scholar 

  22. E. van Lenthe, A. Ehlers, and E.-J. Baerends. J. Chem. Phys., 1999, 110, 8943–8953.

    Article  CAS  Google Scholar 

  23. C. C. Pye and T. Ziegler. Theor. Chem. Acc., 1999, 101, 396–408.

    Article  CAS  Google Scholar 

  24. J. Autschbach. ChemPhysChem, 2009, 10, 2274–2283.

    Article  CAS  PubMed  Google Scholar 

  25. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold. NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.

    Google Scholar 

  26. M. Buhl. Organometallics, 1997, 16, 261–267.

    Article  Google Scholar 

  27. E. M. Chernova, V. N. Sitnikov, V. V. Turovtsev, and Yu. D. Orlov. J. Struct. Chem., 2018, 59(6), 1265–1270.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to M. Ryzhikov for his technical support with the computer cluster used for our calculations and to A. Igoshkin for his criticism of aesthetic issues of the figures and the text of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mirzaeva.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 11, pp. 1821–1828.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaeva, I.V., Kozlova, S.G. The Nature of Halogen Dependence of 103Rh NMR Chemical Shift in Complex Anions cis-[X1X2Rh(CO)2] (X1, X2 = Cl, Br, I). J Struct Chem 60, 1750–1756 (2019). https://doi.org/10.1134/S0022476619110076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619110076

Keywords

Navigation