Log in

The catalytic mechanism of CO oxidation in AlAu6 clusters determined by density functional theory

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We present density functional calculations of O2 and CO adsorption on an AlAu6 cluster. It is found that in the AlAu6 cluster the active sites would be first occupied by coming O2 rather than CO due to a more negative binding energy of the former. Furthermore, the catalytic mechanisms of CO oxidation in AlAu6 clusters, which are based on a single CO molecule and double CO molecules, are discussed. This investigation reveals that the reaction of a single CO molecule with the AlAu6O2 complex has the lowest activation barrier (0.27 eV), which is 0.51 eV lower than that of the pure Au 6 cluster. For the AlAu6O2(CO)2 complex, due to the structural distortion of the AlAu6 cluster, the activation barrier of the determination rate is higher by 0.53 eV than that of the AlAu6O2CO complex, which shows that the cooperation effect of the second CO molecule can go against CO oxidation. For the Al@Au6O2(CO)2 complex, the activation barrier of the determination rate is lower by 0.07 eV than the path of one CO molecule, which demonstrates that the cooperation effect of the second CO molecule can prompt CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haruta, N. Yamada, T. Kobayashi, et al., J. Catal., 115, 301 (1989).

    Article  CAS  Google Scholar 

  2. I. X. Green, W. Tang, M. McEntee, et al., J. Am. Chem. Soc., 134, 12717 (2012).

    Article  CAS  Google Scholar 

  3. X. Liu, M. H. Liu, Y. C. Luo, et al., J. Am. Chem. Soc., 134, 10251 (2012).

    Article  CAS  Google Scholar 

  4. T. Fujitani and I. Nakamura, Angew. Chem., 123, 10326 (2011).

    Article  Google Scholar 

  5. M. Shekhar, J. Wang, W. S. Lee, et al., J. Am. Chem. Soc., 134, 4700 (2012).

    Article  CAS  Google Scholar 

  6. R. J. Lin, H. L. Chen, S. P. Ju, et al., J. Phys. Chem. C, 116, 336 (2012).

    Article  CAS  Google Scholar 

  7. S. Zhang, S. Guo, H. Zhu, et al., J. Am. Chem. Soc., 134, 5060 (2012).

    Article  CAS  Google Scholar 

  8. S. Sarina, H. Zhu, E. Jaatinen, et al., J. Am. Chem. Soc., 135, 5793 (2013).

    Article  CAS  Google Scholar 

  9. C. J. Wang, X. Y. Kuang, H. Q. Wang, et al., Comput. Theor. Chem., 1002, 31 (2012).

    Article  CAS  Google Scholar 

  10. Y. F. Li, A. J. Mao, Y. Li, et al., J. Mol. Model., 18, 3061 (2012).

    Article  CAS  Google Scholar 

  11. C. Majumder, A. K. Kandalam, and P. Jena, Phys. Rev. B, 74, 205437–1 (2006).

    Article  Google Scholar 

  12. M. Zhang, S. Chen, Q. M. Deng, et al., Eur. Phys. J. D, 58, 117 (2010).

    Article  CAS  Google Scholar 

  13. M. Zhang, S. B. Yang, X. J. Feng, et al., Eur. Phys. J. D, 67, 11 (2013).

    Article  Google Scholar 

  14. G. F. Zhao, Y. L. Wang, J. M. Sun, et al., Acta Phys.-Chim. Sin., 28, 1355 (2012).

    CAS  Google Scholar 

  15. W. Z. Yao, B. T. Liu, Z. H. Lu, et al., J. Phys. Chem. A, 117, 5178 (2013).

    Article  CAS  Google Scholar 

  16. P. V. Nhat, T. B. Tai, and M. T. Nguyen, J. Chem. Phys., 137, 164312–1 (2012).

    Article  Google Scholar 

  17. L. Lin, P. Lieven, and M. T. Nguyen, Chem. Phys. Lett., 498, 296 (2010).

    Article  CAS  Google Scholar 

  18. W. T. Wallace and R. L. Whetten, J. Am. Chem. Soc., 124, 7499 (2002).

    Article  CAS  Google Scholar 

  19. J. Rodríguez, L. Feria, T. Jirsak, et al., J. Am. Chem. Soc., 132, 3177 (2010).

    Article  Google Scholar 

  20. Q. Sun, P. Jena, Y. D. Kim, et al., J. Chem. Phys., 120, 6510 (2004).

    Article  CAS  Google Scholar 

  21. E. M. Fernández, P. Ordejón, and L. C. Balbás, Chem. Phys. Lett., 408, 252 (2005).

    Article  Google Scholar 

  22. M. Amft, B. Johansson, and N. V. Skorodumova, J. Chem. Phys., 136, 024312 (2012).

    Article  Google Scholar 

  23. F. Wang, D. Zhang, X. Xu, et al., J. Phys. Chem. C, 113, 18032 (2009).

    Article  CAS  Google Scholar 

  24. W. An, Y. Pei, and X. C. Zeng, Nano. Lett., 8, 195 (2008).

    Article  CAS  Google Scholar 

  25. M. Stamatakis, M. A. Christiansen, D. G. Vlachos, et al., Nano. Lett., 12, 3621 (2012).

    Article  CAS  Google Scholar 

  26. H. T. Chen, J. G. Chang, S. P. Ju, et al., J. Comput. Chem., 31, 258 (2009).

    Google Scholar 

  27. H. Y. Kim, S. S. Han, J. H. Ryu, et al., J. Phys. Chem. C, 114, 3156 (2010).

    Article  CAS  Google Scholar 

  28. Y. Gao, N. Shao, S. Bulusu, et al., J. Phys. Chem. C, 112, 8234 (2008).

    Article  CAS  Google Scholar 

  29. F. R. Negreiros, L. Sementa, and G. Barcaro, et al., ACS Catal., 2, 1860 (2012).

    Article  CAS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision C02, Gaussian Inc., Pittsburgh, PA (2003).

    Google Scholar 

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  32. C. Peng, P. Y. Ayala, H. B. Schlegel, et al., J. Comput. Chem., 17, 49 (1996).

    Article  CAS  Google Scholar 

  33. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 90, 2154 (1989).

    Article  CAS  Google Scholar 

  34. C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 94, 5523 (1990).

    Article  CAS  Google Scholar 

  35. M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., J. Phys.: Condens. Matter, 14, 2717 (2002).

    CAS  Google Scholar 

  36. S. J. Clark, M. D. Segall, C. J. Pickard, et al., Kristallografiya, 220, 567 (2005).

    CAS  Google Scholar 

  37. H. Joe, M. E. Kent, and W. C. Lineberger, J. Chem. Phys., 93, 6987 (1990).

    Article  Google Scholar 

  38. B. Simard and P. A. Hackett, J. Mol. Spectrosc., 142, 310 (1990).

    Article  CAS  Google Scholar 

  39. B. Rosen, Spectroscopic Data Relative to Diatomic Molecules, Oxford University Press, New York (1970).

    Google Scholar 

  40. K. A. Gingerich and G. D. Blue, J. Chem. Phys., 59, 185 (1973).

    Article  CAS  Google Scholar 

  41. M. D. Morse, Chem. Rev., 86, 1049 (1986).

    Article  CAS  Google Scholar 

  42. Y. Zhang and W. Yang, Phys. Rev. Lett., 80, 890 (1998).

    Article  CAS  Google Scholar 

  43. D. R. Lide, CRC Handbook of Chemistry, Physics, 55th ed., CRC Press, Cleveland (1974).

    Google Scholar 

  44. H. M. Lee, M. Ge, B. R. Sahu, et al., J. Phys. Chem. B, 107, 9994 (2003).

    Article  CAS  Google Scholar 

  45. G. Blyholder, J. Phys. Chem., 68, 2772 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guo.

Additional information

Original Russian Text © 2016 A. Li, L. GuoX. An, N. Liu, Z. Cao, W. Li, X. Zheng, Y. Shi, J. Guo, Y. **.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Guo, L., An, X. et al. The catalytic mechanism of CO oxidation in AlAu6 clusters determined by density functional theory. J Struct Chem 57, 54–64 (2016). https://doi.org/10.1134/S0022476616010078

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616010078

Keywords

Navigation