Log in

Coherent Structures and Turbulent Transport in the Initial Region of Jets and Flame in Swirling Flow

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents the results of experimental studies of the spatial flow structure and coherent structures in the initial region of swirling jets at a Reynolds number of 5000 and different swirl rates. The contribution of these structures to the turbulent transport of momentum and mass was first quantitatively evaluated. In addition, for the case of high swirl with vortex core breakdown, the effect of coherent structures on the fluctuation in the local heat release rate due to the deformation of the flame front was investigated for combustion of a methane-air mixtures with an air excess ratio of 1.43.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Tacina, “Combustor Technology for Future Aircraft,” Preprint No. 103268 (NASA Tech. Memorandum, Cleveland, 1990).

    Book  Google Scholar 

  2. Lean Combustion: Technology and Control, Ed. by D. Dunn-Rankin. (Academic Press, Boston-San Diego-London, 2008).

    Google Scholar 

  3. A. I. Mikhailov, G. M. Gorbunov, V. V. Borisov, L. A. Kvasnikov, and N. I. Markov, Workflow and Calculation of Gas Turbine Engine Combustors (Oborongiz, Moscow, 1959) [in Russian].

    Google Scholar 

  4. A. N. Shtym, Aerodynamics of Cyclone-Vortex Chambers (Dal’nevost. Gos. Univ., Vladivostok, 1985) [in Russian].

    Google Scholar 

  5. R. B. Akhmedov, T. B. Balagula, F. K. Rashidov, and A. Yu. Sakaev, Aerodynamics of Swirling Jets (Energiya, Moscow, 1977) [in Russian].

    Google Scholar 

  6. A. K. Gupta, D. G. Lilley, and N. Cyred, Swirl Flows (Abacus Press, Tunbridge Wells, Kent, 1987).

    Google Scholar 

  7. O. Lucca-Negro and T. O’Doherty, “Vortex Breakdown: A Review,” Progr. Energy Combust. Sci. 27, 431–481 (2001).

    Article  Google Scholar 

  8. P. Billant, J. M. Chomaz, and P. Huerre, “Experimental Study of Vortex Breakdown in Swirling Jets,” J. Fluid Mech. 376, 183–219 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Liang and T. Maxworthy, “An Experimental Investigation of Swirling Jets,” J. Fluid Mech. 525, 115–159 (2005).

    Article  ADS  Google Scholar 

  10. K. Oberleithner, C. O. Paschereit, R. Seele, and I. Wygnanski, “Formation of Turbulent Vortex Breakdown: Intermittency, Criticality, and Global Instability,” AIAA J. 50 (7), 1437–1452 (2012).

    Article  ADS  Google Scholar 

  11. C. Schneider, A. Dreizler, and J. Janicka, “Fluid Dynamical Analysis of Atmospheric Reacting and Isothermal Swirling Flows,” Flow Turb. Combust. 74, 103–127 (2005).

    Article  Google Scholar 

  12. P. M. Anacleto, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, “Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor,” Combust. Sci. Technol. 175, 1369–1388 (2003.

    Article  Google Scholar 

  13. N. Syred, “A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems,” Progr. Energy Combust. Sci. 32, 93–161 (2006).

    Article  Google Scholar 

  14. D. M. Markovich, S. S. Abdurakipov, L. M. Chikishev, et al., “Comparative Analysis of Low- and High-Swirl Confined Flames and Jets by Proper Orthogonal and Dynamic Mode Decompositions,” Phys. Fluids 26, 065109 (2014).

    Article  ADS  Google Scholar 

  15. M. R. Johnson, D. Littlejohn, W. A. Nazeer, et al., “A Comparison of the Flowfields and Emissions of High-Swirl Injectors and Low-Swirl Injectors for Lean Premixed Gas Turbines,” Proc. Combust. Inst. 30, 2867–2874 (2005).

    Article  Google Scholar 

  16. M. Legrand, J. Nogueira, A. Lecuona, et al., “Atmospheric Low Swirl Burner Flow Characterization with Stereo PIV,” Exp. Fluids 48, 901–913 (2010).

    Article  Google Scholar 

  17. S. V. Alekseenko, V. M. Dulin, Yu. S. Kozorezov, and D. M. Markovich, “Effect of High-Amplitude Forcing on Turbulent Combustion Intensity and Vortex Core Precession in a Strongly Swirling Lifted Propane/Air Flame,” Combust. Sci. Technol. 184, 1862–1890 (2012).

    Article  Google Scholar 

  18. S. A. Filatyev, M. P. Thariyan, R. P. Lucht, and J. P. Gore, “Simultaneous Stereo Particle Image Velocimetry and Double-Pulsed Planar Laser-Induced Fluorescence of Turbulent Premixed Flames,” Combust. Flame 150, 201–209 (2007).

    Article  Google Scholar 

  19. A. Stöhr, R. Sadanandan, and W. Meier, “Phase-Resolved Characterization of Vortex-Flame Interaction in a Turbulent Swirl Flame,” Exp. Fluids 51, 1153–1167 (2011).

    Article  Google Scholar 

  20. V. M. Dulin, A. S. Lobasov, L. M. Chikishev, et al., “On Impact of Helical Structures on Stabilization of Swirling Flames with Vortex Breakdown,” Flow, Turb. Combust. 103 (4), 887–911 (2019).

    Article  Google Scholar 

  21. G. Kerschen, J. C. Golinval, A. F. Vakakis, and L. A. Bergman, “The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview,” Nonlin. Dyn. 41 (1), 147–169 (2005).

    Article  MathSciNet  Google Scholar 

  22. A. S. Lobasov, S. V. Alekseenko, D. M. Markovich, and V. M. Dulin, “Mass and Momentum Transport in the near Field of Swirling Turbulent Jets. Effect of Swirl Rate,” Int. J. Heat Fluid Flow 83 108539 (2020).

    Article  Google Scholar 

  23. J. C. R. Hunt, A. A. Wray, and P. Moin, “Eddies, Stream, and Convergence Zones in Turbulent Flows,” in Studying Turbulence Using Numerical Simulation Databases: Proc. of the 1988 Summer Program (Stanford Univ., Stanford, 1988), Vol. 2, pp. 193–208.

    Google Scholar 

  24. S. V. Alekseenko, S. S. Abdurakipov, M. Y. Hrebtov, et al., “Coherent Structures in the Near-Field of Swirling Turbulent Jets: A Tomographic PIV Study,” Int. J. Heat Fluid Flow 70, 363–379 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lobasov.

Additional information

This work was supported by the Russian Science Foundation (Grant No. 16-19-10566).

Original Russian Text © A.S. Lobasov, L.M. Chikishev, V.M. Dulin, D.M. Markovich.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 61, No. 3, pp. 42–51, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobasov, A.S., Chikishev, L.M., Dulin, V.M. et al. Coherent Structures and Turbulent Transport in the Initial Region of Jets and Flame in Swirling Flow. J Appl Mech Tech Phy 61, 350–358 (2020). https://doi.org/10.1134/S0021894420030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420030050

Keywords

Navigation