Log in

Microwave Absorption by Charge Density Waves in La2–xSrxCuO4

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The results of studying the La2–xSrxCuO4 (x = 0.077−0.195) crystals with the microwave absorption, direct current resistance and magnetic susceptibility measurements are presented. The do**-temperature phase diagram with the boundaries of the areas with charge density waves, superconducting fluctuation and the bulk superconductivity state is plotted. The do** range of the charge density wave existence is found to be broader than that obtained from the X-Ray Diffraction study. It spreads at least down to x = 0.077.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Gor’kov and A. V. Sokol, JETP Lett. 46, 420 (1987).

    ADS  Google Scholar 

  2. J. Zaanen and O. Gunnarson, Phys. Rev. B 40, R7391(1989).

    Google Scholar 

  3. A. Bianconi and M. Missori, J. Phys. I (France) 4, 361 (1994).

    Article  Google Scholar 

  4. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature (London, U.K.) 375, 561 (1995).

    Article  ADS  Google Scholar 

  5. Y. Ando, A. N. Lavrov, S. Komiya, K. Segawa, and X. F. Sun, Phys. Rev. Lett. 87, 017001 (2001).

    Article  ADS  Google Scholar 

  6. B. Buchner, M. Breuer, A. Freimuth, and A. P. Kampf, Phys. Rev. Lett. 73, 1841 (1994).

    Article  ADS  Google Scholar 

  7. M. Huecker, M. V. Zimmermann, G. D. Gu, Z. J. Xu, J. S. Wen, G. Xu, H. J. Kang, A. Zheludev, and J. M. Tranquada, Phys. Rev. B 83, 104506 (2011).

    Article  ADS  Google Scholar 

  8. M. K. Crawford, R. L. Harlow, E. M. McCarron, W. E. Farneth, J. D. Axe, H. Chou, and Q. Huang, Phys. Rev. B 73, 7749 (1991).

    Article  ADS  Google Scholar 

  9. H.-H. Klauss, W. Wagener, M. Hillberg, W. Kopmann, H. Walf, F. J. Litterst, M. Hücker, and B. Büchner, Phys. Rev. Lett. 85, 4590 (2000).

    Article  ADS  Google Scholar 

  10. Q.-M. Zhang, X. N. Ying, M. Gu, and Y. N. Wang, Europhys. Lett. 70, 232 (2005).

    Article  ADS  Google Scholar 

  11. J. Hori, S. Iwata, H. Kurisaki, F. Nakamura, T. Suzuki, and T. Fujita, Phys. C (Amsterdam, Neth.) 388–389, 331 (2003).

    Article  Google Scholar 

  12. H. Kimura, K. Hirota, C. Lee, K. Yamada, and G. Shirane, J. Phys. Soc. Jpn. 69, 851 (2000).

    Article  ADS  Google Scholar 

  13. T. P. Croft, C. Lester, M. S. Senn, A. Bombardi, and S. M. Hayden, Phys. Rev. B 89, 224513 (2014).

    Article  ADS  Google Scholar 

  14. V. Thampy, M. P. M. Dean, N. B. Christensen, L. Steinke, Z. Islam, M. Oda, M. Ido, N. Momono, S. B. Wilkins, and J. P. Hill, Phys. Rev. B 90, R100510 (2014).

    Google Scholar 

  15. S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. 75, 1201 (2003).

    Article  ADS  Google Scholar 

  16. O. Cyr-Choinière, R. Daou, F. Laliberté, et al., Phys. Rev. B 97, 064502 (2018).

    Article  ADS  Google Scholar 

  17. S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T. Loew, M. Minola, M. Bluschke, E. Weschke, B. Keimer, and M. Le Tacon, Phys. Rev. B 90, 054513 (2014).

    Article  ADS  Google Scholar 

  18. M. Hücker, N. B. Christensen, A. T. Holmes, E. Blackburn, E. M. Forgan, R. Liang, D. A. Bonn, W. N. Hardy, O. Gutowski, M. M. Zimmermann, S. M. Hayden, and J. Chang, Phys. Rev. B 90, 054514 (2014).

    Article  ADS  Google Scholar 

  19. T. Kawamata, T. Adachi, T. Noji, and Y. Koike, Phys. Rev. B 62, R11981 (2000).

    Google Scholar 

  20. L. P. Gor’kov and G. B. Teitel’baum, Sci. Rep. 5, 8524 (2015).

    Article  Google Scholar 

  21. H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski, and W. F. Peck, Phys. Rev. Lett. 69, 2975 (1992).

    Article  ADS  Google Scholar 

  22. M. S. Grbic, N. Barisicr, A. Dulcic, I. Kupcic, Y. Li, X. Zhao, G. Yu, M. Dressel, M. Greven, and M. Pozek, Phys. Rev. B 80, 094511 (2009).

    Article  ADS  Google Scholar 

  23. C. E. Gough and N. J. Exon, Phys. Rev. B 50, 488 (1994).

    Article  ADS  Google Scholar 

  24. I. Gimazov, Yu. Talanov, V. Sakhin, T. Adachi, T. Noji, and Y. Koike, Appl. Magn. Reson. 48, 861 (2017).

    Article  Google Scholar 

  25. T. Adachi, K. Omori, Y. Tanabe, and Y. Koike, J. Phys. Soc. Jpn. 78, 114707 (2009).

    Article  ADS  Google Scholar 

  26. L. S. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Bozovic, and N. P. Armitage, Nat. Phys. 7, 298 (2011).

    Article  Google Scholar 

  27. N. B. Christensen, J. Chang, J. Larsen, M. Fujita, M. Oda, M. Ido, N. Momono, E. M. Forgan, A. T. Holmes, J. Mesot, M. Huecker, and M. V. Zimmermann, ar**v:1404.3192.

  28. S. Badoux, S. A. A. Afshar, B. Michon, A. Ouellet, S. Fortier, D. LeBoeuf, T. P. Croft, C. Lester, S. M. Hayden, H. Takagi, K. Yamada, D. Graf, N. Doiron-Leyraud, and L. Taillefer, Phys. Rev. X 6, 021004 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gimazov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimazov, I.I., Adachi, T., Omori, K. et al. Microwave Absorption by Charge Density Waves in La2–xSrxCuO4. Jetp Lett. 108, 675–679 (2018). https://doi.org/10.1134/S0021364018220034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018220034

Navigation