Log in

Nernst-Ettingshausen effect in graphene

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The Nernst-Ettingshausen effect corresponds to the regime of crossed magnetic and electric fields. In the current theoretical studies of this effect in graphene, the dependence of the Landau levels on the applied electric field is neglected. This dependence takes place in the case of the nonquadratic energy spectrum of the charge carriers. In this work, oscillations of the Nernst coefficient in graphene with a zero and nonzero band gap have been studied taking into account such dependence. The effect of the Coulomb interaction on these oscillations is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2008).

    Article  Google Scholar 

  3. L. A. Falkovsky, J. Exp. Theor. Phys. 115, 1151 (2012).

    Article  ADS  Google Scholar 

  4. I. A. Luk’yanchuk, A. A. Varlamov, and A. V. Kavokin, Phys. Rev. Lett. 107, 016601 (2011).

    Article  ADS  Google Scholar 

  5. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, New York, 2012).

    Book  Google Scholar 

  6. V. Lukose, R. Shankar, and G. Baskaran, Phys. Rev. Lett. 98, 116802 (2007).

    Article  ADS  Google Scholar 

  7. Z. Z. Alisultanov, Physica B 438, 41 (2014).

    Article  ADS  Google Scholar 

  8. I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1959).

    Article  ADS  Google Scholar 

  9. I. M. Lifshits and A. M. Kosevich, Sov. Phys. JETP 2, 636 (1955).

    Google Scholar 

  10. Z. Z. Alisultanov, JETP Lett. 99, 232 (2014).

    Article  ADS  Google Scholar 

  11. A. A. Varlamov, A. V. Kavokin, I. A. Luk’yanchuk, and S. G. Sharapov, Phys. Usp. 55, 1146 (2012).

    Article  ADS  Google Scholar 

  12. A. von Ettingshausen and W. Nernst, Ann. Phys. 265, 343 (1886).

    Article  Google Scholar 

  13. E. H. Sondheimer, Proc. R. Soc. London A 193, 484 (1948).

    Article  MATH  ADS  Google Scholar 

  14. Yu. N. Obraztsov, Sov. Phys. Solid State 6, 331 (1964).

    Google Scholar 

  15. V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

    Article  ADS  Google Scholar 

  16. A. G. Aronov and G. E. Pikus, Sov. Phys. JETP 24, 339 (1966).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Z. Alisultanov.

Additional information

Original Russian Text © Z.Z. Alisultanov, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 99, No. 12, pp. 813–816.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alisultanov, Z.Z. Nernst-Ettingshausen effect in graphene. Jetp Lett. 99, 702–705 (2014). https://doi.org/10.1134/S0021364014120030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014120030

Keywords

Navigation