Log in

A High-Power Source of Ultrawideband Radiation of Subnanosecond Duration with Controllable Characteristics

  • ELECTRONICS AND RADIO ENGINEERING
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A high-power source of ultrawideband radiation of subnanosecond duration based on a hybrid antenna with an offset reflector has been developed. At the focus of the reflector, there is an array of 2 × 2 combined antennas excited by a four-channel bipolar voltage pulse former with an amplitude of 60 kV and a duration of 0.5 ns at a repetition frequency of up to 100 Hz. Radiation modes with discrete scanning of the wave beam, as well as with linear, orthogonal, and elliptical polarizations, were implemented. Radiation pulses with a field strength of 40–120 kV/m at a distance of 4.5 m were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Giri, D.V., High-Power Electromagnetic Radiators (Nonlethal Weapons and Other Applications), Cambridge, MA: Harvard Univ. Press, 2004.

    Google Scholar 

  2. Giri, D.V., Hoad, R., and Sabath, F., High-Power Electromagnetic Effects on Electronic Systems, Boston/London: Artech House, 2020.

    Google Scholar 

  3. Ultra-Wideband Radar Technology, Taylor, J.D., Ed., Boca Raton, FL: CRC Press, 2001.

    Google Scholar 

  4. Koshelev, V.I., Buyanov, Yu.I., and Belichenko, V.P., Ultrawideband Short-Pulse Radio Systems, Boston/London: Artech House, 2017.

    Google Scholar 

  5. Giri, D.V., Lachner, H., Smith, I.D., Morton, D.W., Baum, C.E., Marek, J.R., Prather, W.D., and Scholfield, D.W., IEEE Trans. Plasma Sci., 1997, vol. 25, no. 2, p. 318.

    Article  ADS  Google Scholar 

  6. Ryu, J., Lee, J., Chin, H., Yeom, J.-H., Rom, H.-T., Kwon, H.-O., Han, S.H., and Choi, J.S., IEEE Trans. Plasma Sci., 2013, vol. 41, no. 8, p. 2283. https://doi.org/10.1109/TPS.2013.2272472

    Article  ADS  Google Scholar 

  7. Fortov, V.E., Isaenkov, Yu.I., Mikhailov, V.M., Nesterov, E.V., Ostashev, V.E., Semenov, Yu.V., and Stroganov, V.A., J. Commun. Technol. Electron., 2013, vol. 58, no. 11, p. 1065. https://doi.org/10.1134/S1064226913110041

    Article  Google Scholar 

  8. Balzovsky, E., Buyanov, Y., Koshelev, V., Nekrasov, E., Gubanov, V., Stepchenko, A., and Efremov, A., Proc. 20th Int. Symposium on High-Current Electronics (ISHCE), New York: IEEE, 2018, p. 80. https://doi.org/10.1109/ISHCE.2018.8521226

  9. Efremov, A.M., Koshelev, V.I., Kovalchuk, B.M., and Plisko, V.V., Instrum. Exp. Tech., 2013, vol. 56, no. 3, p. 302. https://doi.org/10.1134/S0020441213030020

    Article  Google Scholar 

  10. Efremov, A.M., Koshelev, V.I., Plisko, V.V., and Sevostyanov, E.A., Instrum. Exp. Tech., 2019, vol. 62, no. 1, p. 33. https://doi.org/10.1134/S0020441218060052

    Article  Google Scholar 

  11. Buyanov, Yu.I., Balzovsky, E.V., Koshelev, V.I., and Nekrasov, E.S., Russ. Phys. J., 2019, vol. 62, no. 7, p. 1214. https://doi.org/10.1007/s11182-019-01837-2

    Article  Google Scholar 

  12. Balzovsky, E., Buyanov, Y., Koshelev, V., and Nekrasov, E., Microwave Opt. Technol. Lett., 2021, vol. 63, no. 11, p. 2866. https://doi.org/10.1002/mop.32994

    Article  Google Scholar 

  13. Balzovsky, E.V., Buyanov, Yu.I., Koshelev, V.I., and Nekrasov, E.S., Proc. 2nd Int. Conference on Advances in Materials, Systems and Technologies (CAMSTech), New York: AIP, 2022, vol. 2467, p. 060021. https://doi.org/10.1063/5.0092398

  14. Andreev, Yu.A., Gubanov, V.P., Efremov, A.M., Koshelev, V.I., Korovin, S.D., Kovalchuk, B.M., Kremnev, V.V., Plisko, V.V., Stepchenko, A.S., and Sukhushin, K.N., Laser Part. Beams, 2003, vol. 21, no. 2, p. 211. https://doi.org/10.1017/S0263034603212088

    Article  ADS  Google Scholar 

  15. Efremov, A.M., Instrum. Exp. Tech., 2017, vol. 60, no. 4, p. 541. https://doi.org/10.1134/S0020441217040030

    Article  Google Scholar 

  16. Andreev Yu.A., Koshelev, V.I., and Plisko, V.V., Doklady 5-oi Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Radiolokatsiya i radiosvyaz’ (Proc. 5th All-Russian Scientific and Technical Conference “Radiolocation and Radiocommunication”), Moscow: Kotelnikov Institute of Radio-Engineering and Electronics Russ. Acad. Sci., 2011, p. 77.

  17. Efremov, A.M., Koshelev, V.I., Kovalchuk, B.M., Plisko, V.V., and Sukhushin, K.N., Instrum. Exp. Tech., 2011, vol. 54, no. 1, p. 70. https://doi.org/10.1134/S0020441211010052

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-08-00529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Koshelev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balzovsky, E.V., Buyanov, Y.I., Efremov, A.M. et al. A High-Power Source of Ultrawideband Radiation of Subnanosecond Duration with Controllable Characteristics. Instrum Exp Tech 66, 394–401 (2023). https://doi.org/10.1134/S0020441223020136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223020136

Navigation