Log in

Determination of the Oxidation State of the 99Tc Technetium Isotope on Activated Carbon by X-Ray Photoelectron Spectroscopy

  • Published:
Inorganic Materials Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract—

The oxidation state of 99Tc adsorbed on the surface of AG-3 (I) and KAU (II) activated carbon from an aqueous potassium pertechnetate (KTcO4) solution has been studied by X-ray photoelectron spectroscopy at binding energies Eb in the range from zero to 1250 eV. The measured Eb(Tc 3d5/2) in sample I is 260.0, 258.2, and 258.3 eV, indicating the presence of three states: Tc7+, Tc5+, and Tc3+. The Tc 3d electron spectrum of the surface of sample II shows only two spin doublets, corresponding to two oxidation states of technetium, Tc3+ and Tc5+, in the ratio 23 : 77.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Laverov, N.P., Yudintsev, S.V., Konovalov, E.E., Mishevets, T.O., Nikonov, B.S., and Omel’yanenko, B.I., Matrices for isolation of long-lived radionuclides, Dokl. Chem., 2010, vol. 431, no. 2, pp. 102–108.https://doi.org/10.1134/S0012500810040026

    Article  CAS  Google Scholar 

  2. Ryabchikov, B.E., Sovremennye metody podgotovki vody dlya promyshlennogo i bytovogo ispol’zovaniya: pit’evaya voda, pishchevaya prom-st', energetika (Advanced Water Preparation Methods for Industrial and Domestic Consumption: Potable Water, Food Industry, and Power Generation), Moscow: DeLi Print, 2004.

  3. Daňo, M., Viglašová, E., Galamboš, M., Rajec, P., and Novák, I., Sorption behaviour of pertechnetate on oxidized and reduced surface of activated carbon, J. Radioanal. Nucl. Chem., 2017, vol. 314, no. 3, pp. 2219–2227.https://doi.org/10.1007/s10967-017-5532-3

    Article  CAS  Google Scholar 

  4. Wang, Y., Gao, H., Yeredla, R., Xu, H., and Abrecht, M., Control of pertechnetate sorption on activated carbon by surface functional groups, J. Colloid Interface Sci., 2007, vol. 305, no. 15, pp. 209–217.https://doi.org/10.1016/j.jcis.2006.09.056

    Article  CAS  PubMed  Google Scholar 

  5. Li, D., Seaman, J.C., Kaplan, D.I., Heald, S.M., and Sun, C., Pertechnetate (\({\text{TcO}}_{4}^{ - }\)) sequestration from groundwater by cost-effective organoclays and granular activated carbon under toxic environmental conditions, Chem. Eng. J., 2019, vol. 360, pp. 1–9.https://doi.org/10.1016/j.cej.2018.11.146

    Article  CAS  Google Scholar 

  6. Holm, E., Gäfvert, T., Lindahl, P., and Roos, P., In situ sorption of technetium using activated carbon, Appl. Radiat. Isot., 2000, vol. 53, nos. 1–2, pp. 153–157.https://doi.org/10.1016/S0969-8043(00)00127-5

    Article  CAS  PubMed  Google Scholar 

  7. Gerasimov, V.N., Kryuchkov, S.V., Kuzina, A.F., Kulakov, V.M., Pirozhkov, S.V., and Spitsin, V.I., X-ray photoelectron spectroscopy study of technetium compounds, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 1, pp. 148–152.

    CAS  Google Scholar 

  8. Thompson, M., Nunn, A.D., and Treher, E.N., X-ray photoelectron spectroscopy of potential technetium-based organ imaging agents, Anal. Chem., 1986, vol. 58, pp. 3100–3103.https://doi.org/10.1021/ac00127a041

    Article  CAS  Google Scholar 

  9. Wester, D.W., White, D.H., Miller, F.W., Dean, R.T., Schreifels, J.A., and Hunt, J.E., Synthesis and characterization of technetium complexes with phosphorus containing ligands. the homoleptic trimethylphosphite, dimethylmethylphosphonite and methyldiethylphosphinite technetium (I) cations, Inorg. Chim. Acta, 1987, vol. 131, no. 2, pp. 163–169.https://doi.org/10.1016/S0020-1693(00)96019-5

    Article  CAS  Google Scholar 

  10. Chatterjee, S., Hall, G.B., Johnson, I.E., Du, Y., Walter, E.D., Washton, N.M., and Levitskaia, T.G., Surprising formation of quasi-stable Tc(VI) in high ionic strength alkaline media, Inorg. Chem. Front., 2018, vol. 5, pp. 2081–2091.https://doi.org/10.1039/C8QI00219C

    Article  CAS  Google Scholar 

  11. Sosulnikov, M.I. and Teterin, Yu.A., X-ray photoelectron studies of Ca, Sr, Ba and their oxides and carbonates, J. Electron Spectrosc. Relat. Phenom., 1992, vol. 59, no. 2, pp. 111–126.https://doi.org/10.1016/0368-2048(92)85002-O

    Article  CAS  Google Scholar 

  12. Gerasimov, V.N., Kryuchkov, S.V., German, K.E., Kulakov, V.M., and Kuzina, A.F., X-ray photoelectron spectroscopy study of the structure of technetium complexes, Preprint of Inst. of Atomic Energy, Moscow, 1990, no. IAE-5041/9.

  13. Peretrukhin, V.F., Rovnyi, S.I., Ershov, V.V., German, K.E., and Kozar’, A.A., Preparation of technetium metal for transmutation into ruthenium, Russ. J. Inorg. Chem., 2002, vol. 47, no. 5, pp. 637–642.

    Google Scholar 

  14. GOST (State Standard) R 56357-2015: AG-3 Activated Carbon, Technical Specificatons, 1999.

  15. Gratuito, M.K.B., Panyathanmaporn, T., Chumnanklang, R.A., Sirinuntawittaya, N.B., and Dutta, A., Production of activated carbon from coconut shell: optimization using response surface methodology, Bioresour. Technol., 2008, vol. 99, no. 11, pp. 4887–4895.https://doi.org/10.1016/j.biortech.2007.09.042

    Article  CAS  PubMed  Google Scholar 

  16. Baranov, A.N., Zelenkov, A.G., Kulakov, V.M., Smilga, V.P., Teterin, Yu.A., Karpukhin, V.I., Tumanov, Yu.P., and Chugunov, O.K., X-ray photoelectron spectroscopy study of neutron-irradiated pyrolytic graphite, At. Energ., 1979, vol. 46, no. 5, pp. 329–332.

    Article  CAS  Google Scholar 

  17. Baranov, A.N., Zelenkov, A.G., Kulakov, V.M., Smilga, V.P., Teterin, Yu.A., Karpukhin, V.I., Tumanov, Yu.P., and Chugunov, O.K., X-ray photoelectron spectroscopy study of neutron-irradiated pyrolytic graphite, in Elektronnaya spektroskopiya (Electron Spectroscopy), Kiev: Naukova Dumka, 1979, pp. 25–34.

  18. Baev, A.S., Zelenkov, A.G., Kulakov, V.M., Odinov, B.V., Smilga, V.P., Teterin, Yu.A., Tumanov, Yu.P., and Chugunov, O.K., X-ray photoelectron spectroscopy study of irradiation damage in pyrolytic graphite, Zh. Strukt. Khim., 1980, vol. 21, no. 5, pp. 29–33.

    CAS  Google Scholar 

  19. Shirley, D.A., High-resolution x-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B: Condens. Matter Mater. Phys., 1972, vol., no. 12, pp. 4709–4714.https://doi.org/10.1103/PhysRevB.5.4709

  20. Panov, A.P., Software package for analysis of SPRO spectra and SL programming language, Preprint of Inst. of Atomic Energy, Moscow, 1990, no. IAE-6019/15.

  21. Nemoshkalenko, V.V. and Aleshin, A.G., Elektronnaya spektroskopiya kristallov (Electron Spectroscopy of Crystals), Kiev: Naukova Dumka, 1976.

  22. Band, I.M., Kharitonov, Y.I., and Trzhaskovskaya, M.B., Photoionization cross sections and photoelectron angular distributions for X-ray line energies in the range 0.132–4.509 keV targets: 1 ≤ Z ≤ 100, At. Data Nucl. Data Tables, 1979, vol. 23, no. 5, pp. 443–505.https://doi.org/10.1016/0092-640X(79)90027-5

    Article  CAS  Google Scholar 

  23. Childs, B.C., Braband, H., Lawler, K., Mast, D.S., Bigler, L., Stalder, U., Forster, P.M., Czerwinski, K.R., Alberto, R., Sattelberger, A.P., and Poineau, F., Ditechnetium heptoxide revisited: solid-state, gas-phase, and theoretical studies, Inorg. Chem., 2016, vol. 55, no. 20, pp. 10445–10452.https://doi.org/10.1021/acs.inorgchem.6b01683

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez, E.E., Poineau, F., Llobet, A., Sattelberger, A.P., Bhattacharjee, J., Waghmare, U.V., Hartmann, T., and Cheetham, A.K., Structural studies of TcO2 by neutron powder diffraction and first-principles calculations, J. Am. Chem. Soc., 2007, vol. 129, no. 33, pp. 10244–10248.https://doi.org/10.1021/ja0727363

    Article  CAS  PubMed  Google Scholar 

  25. Trzhaskovskaya, M.B. and Yarzhemsky, V.G., Dirac–Fock photoionization parameters for HAXPES applications, At. Data Nucl. Data Tables, 2018, vol. 119, pp. 99–174.https://doi.org/10.1016/j.adt.2017.04.003

    Article  CAS  Google Scholar 

  26. Huang, K.N., Aoyagi, M., Chen, M.N., Crasemann, B., and Mark, H., Neutral-atom electron binding energy from relaxed-orbital relativistic Hartree–Fock–Slater calculations, At. Data Nucl. Data Tables, 1976, vol. 18, no. 3, pp. 243–291.https://doi.org/10.1016/0092-640X(76)90027-9

    Article  CAS  Google Scholar 

  27. Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron spectroscopic characterization of the acetylene cyclotrimerization catalyst NbCl2(CnHn) (n = 10–12), Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, p. 1788–1793.

    Article  Google Scholar 

  28. Makarov, A.V., Safonov, A.V., Konevnik, Yu.V., Teterin, Yu.A., Maslakov, K.I., Teterin, A.Yu., Karaseva, Ya.Yu., German, K.E., and Zakharova, E.V., Activated carbon additives for technetium immobilization in bentonite-based engineered barriers for radioactive waste repositories, J. Hazard. Mater., 2021, vol. 401, paper 123436.https://doi.org/10.1016/j.jhazmat.2020.123436

Download references

ACKNOWLEDGMENTS

In this study, we used equipment purchased through the Development of the Moscow State University Program.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-03-00617) and the Russian Federation Ministry of Science and Higher Education (program no. AAAA-A16-11611091001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teterin, Y.A., Makarov, A.V., Safonov, A.V. et al. Determination of the Oxidation State of the 99Tc Technetium Isotope on Activated Carbon by X-Ray Photoelectron Spectroscopy. Inorg Mater 57, 893–900 (2021). https://doi.org/10.1134/S0020168521090144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521090144

Keywords:

Navigation