Log in

Structural, Mechanical, and Transport Properties of Scandia and Yttria Partially Stabilized Zirconia Crystals

  • Published:
Inorganic Materials Aims and scope

Abstract

Crystals of (ZrO2)1 –x – y(Sc2O3)x(Y2O3)y (x = 0.003–0.045, y = 0.005–0.03) solid solutions have been grown by directional solidification in a cold crucible. All of the crystals consist of a mixture of two tetragonal phases of zirconia, t and t', differing in the degree of tetragonality (c/\(\sqrt 2 a\)): 1.014–1.015 and 1.004–1.005 for the t- and t'-phases, respectively. All of the crystals have high microhardness (13.5–15.0 GPa) and high fracture toughness (on the order of 6–7 MPa m1/2). Their fracture toughness decreases with an increase in the total content of the stabilizing oxides, which is well consistent with the associated changes in phase composition, namely, with the increase in the percentage of the (transformable) t-phase. All of the crystals are similar in electrical conductivity: on the order of 0.04 S/cm at a temperature of 1173 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chevalier, J., Gremillard, L., Virkar, A.V., and Clarke, D.R., The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc., 2009, vol. 92, no. 9, pp. 1901–1920. https://doi.org/10.1111/j.1551-2916.2009.03278.x

    Article  CAS  Google Scholar 

  2. Piconi, C. and Maccauro, G., Zirconia as a ceramic biomaterial, Biomaterials, 1999, vol. 20, pp. 1–25. https://doi.org/10.1016/S0142-9612(98)00010-6

    Article  CAS  PubMed  Google Scholar 

  3. Osiko, V.V. and Lomonova, E.E., Multifunctional materials based on nanostructured partially stabilized zirconia crystals, Herald Russ. Acad. Sci., 2012, vol. 82, no. 5, pp. 373–380.

    Article  Google Scholar 

  4. Goodenough, J.B., Oxide-ion electrolytes, Ann. Rev. Mater. Res., 2003, vol. 33, pp. 91–128. https://doi.org/10.1146/annurev.matsci.33.022802.091651

    Article  CAS  Google Scholar 

  5. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, vol. 174, pp. 135–149. https://doi.org/10.1016/j.ssi.2004.06.015

    Article  CAS  Google Scholar 

  6. Badwal, S.P.S., Ciacchi, F.T., and Milosevic, D., Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation, Solid State Ionics, 2000, vols. 136–137, pp. 91–99. https://doi.org/10.1016/S0167-2738(00)00356-8

    Article  Google Scholar 

  7. Badwal, S.P.S., Materials for solid oxide fuel cells, Materials Forum 21, 1997, pp. 187–224.

  8. Basu, R.N., Materials for Solid Oxide Fuel Cells, New Delhi: Anamaya, 2007.

    Book  Google Scholar 

  9. Yamamoto, O., Arachi, Y., Sakai, H., Takeda, Y., Imanishi, N., Mizutani, Y., Kawai, M., and Nakamura, Y., Zirconia based oxide ion conductors for solid oxide fuel cells, Ionics, 1998, vol. 4, pp. 403–408. https://doi.org/10.1007/BF02375884

    Article  CAS  Google Scholar 

  10. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., Tabachkova, N.Yu., and Volkova, T.V., The impact of structural changes in ZrO2–Y2O3 solid solution crystals grown by directional crystallization of the melt on their transport characteristics, Mater. Lett., 2017, vol. 205, pp. 186–189. https://doi.org/10.1016/j.matlet.2017.06.059

    Article  CAS  Google Scholar 

  11. Borik, M.A., Bublik, V.T., Kulebyakin, A.V., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., and Tabachkova, N.Y., Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content, J. Alloys Compd., 2014, vol. 586, pp. S231–S235. https://doi.org/10.1016/j.jallcom.2013.01.126

    Article  CAS  Google Scholar 

  12. Arachi, Y., Sakai, H., Yamamoto, O., Takeda, Y., and Imanishai, N., Electrical conductivity of the ZrO2–Ln2O3 (Ln – lanthanides) system, Solid State Ionics, 1999, vol. 121, pp. 133–139. https://doi.org/10.1016/S0167-2738(98)00540-2

    Article  CAS  Google Scholar 

  13. Borik, M.A., Vishnyakova, M.A., Voitsitskii, V.P., Kulebyakin, A.V., Lomonova, E.E., Myzina, V.A., Osiko, V.V., and Panov, V.A., Preparation and properties of Y2O3 partially stabilized ZrO2 crystals, Inorg. Mater., 2007, vol. 43, no. 11, pp. 1223–1229.

    Article  CAS  Google Scholar 

  14. Borik, M.A., Vishnyakova, M.A., Zhigalina, O.M., Kulebyakin, A.V., Lavrishchev, S.V., Lomonova, E.E., and Osiko, V.V., Investigation of the microstructure and nanostructure of partially stabilized zirconia crystals, Nanotechnol. Russ., 2008, vol. 3, nos. 11–12, pp. 710–715.

    Article  Google Scholar 

  15. Borik, M.A., Bublik, V.T., Kulebyakin, A.V., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Seryakov, S.V., and Tabachkova, N.Y., Change in the phase composition, structure and mechanical properties of directed melt crystallised partially stabilised zirconia crystals depending on the concentration of Y2O3, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1889–1894. https://doi.org/10.1016/j.jeurceramsoc.2014.12.012

    Article  CAS  Google Scholar 

  16. Evans, G. and Cannon, R.M., Toughening of brittle solids by martensitic transformations, Acta Metall., 1986, vol. 34, no. 5, pp. 761–800. https://doi.org/10.1016/0001-6160(86)90052-0

    Article  CAS  Google Scholar 

  17. Mercer, C., Williams, J.R., Clarke, D.R., and Evans, A.G., On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t') yttria-stabilized zirconia, Proc. R. Soc. London, Ser. A, 2007, vol. 463, pp. 1393–1408. https://doi.org/10.1098/rspa.2007.1829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Tabachkova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarkova, E.A., Borik, M.A., Kulebyakin, A.V. et al. Structural, Mechanical, and Transport Properties of Scandia and Yttria Partially Stabilized Zirconia Crystals. Inorg Mater 55, 748–753 (2019). https://doi.org/10.1134/S0020168519070021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519070021

Keywords:

Navigation