Log in

X-ray diffraction methods for diagnostics of surface and nanolayers of crystalline structures (review)

  • Study of the Structure and Properties Physical Methods for the Study and Monitoring
  • Published:
Inorganic Materials Aims and scope

Abstract

X-ray diffraction methods for investigation of thin surface layers of crystals and characterization of the structures containing nanolayers are considered: double- and triple-crystal diffractometry, asymptotic diffraction, and diffraction under conditions of total external reflection of X-rays. Theoretical foundation of the methods and conditions of their experimental implementation are described and exemplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koval’chuk, M.V., Organic nanomaterials, nanostructures, and nanodiagnostics, Vestn. Ross. Akad. Nauk, 2003, vol. 73, no. 5, pp. 405–411.

    Google Scholar 

  2. Iveronova, V.I. and Revkevich, G.P., Teoriya rasseyaniya rentgenovskikh luchei (Theory of X-Ray Scattering), Moscow: Izd. MGU, 1972.

    Google Scholar 

  3. Pinsker, Z.G., Dinamicheskoe rasseyanie rentgenovskikh luchei v ideal’nykh kristallakh (Dynamic X-Ray Scattering in Perfect Crystals), Moscow: Nauka, 1974.

    Google Scholar 

  4. Blokhin, M.A., Fizika rentgenovskikh luchei. Izd. 2-e (X-Ray Physics. 2nd Edition), Moscow: GITTL, 1957.

    Google Scholar 

  5. Andreev, A.V., X-ray surface optics, Usp. Fiz. Nauk, 1985, vol. 145, no. 1, pp. 113–136.

    Article  Google Scholar 

  6. Alferov, Zh.I., The history and future of semiconductor heterostructures, Semiconductors, 1998, vol. 32, no. 1, pp. 1–14.

    Article  Google Scholar 

  7. Silin, A.P., Semiconducting superlattices, Usp. Fiz. Nauk, 1985, vol. 147, no. 3, pp. 485–521.

    Article  CAS  Google Scholar 

  8. Ledentsov, A.P., Ustinov, V.M., Shchukin, V.A., et al., Quantum dot heterostructures: fabrication, properties, lasers (Review), Semiconductors, 1998, vol. 32, no. 4, pp. 343–365.

    Article  Google Scholar 

  9. Pchelyakov, O.P., Bolkhovityanov, O.B., Dvurechenskii, A.V., et al., Silicon-germanium nanostructures with quantum dots: formation mechanisms and electrical properties, Semiconductors, 2000, vol. 34, no. 11, pp. 1229–1247.

    Article  CAS  Google Scholar 

  10. Strel’chuk, V.V., Litvin, P.M., Kolomys, A.F., et al., Lateral ordering of quantum dots and wires in the (In,Ga)As/GaAs(100) multilayer structures, Semiconductors, 2007, vol. 41, no. 1, pp. 73–80.

    Article  Google Scholar 

  11. Evtikhiev, V.P., Kotel’nikov, E.Yu., Kudryashev, I.V., et al., Correlation between the reliability of laser diodes and the crystal perfection of epitaxial layers estimated by high-resolution X-ray diffractometry, Semiconductors, 1999, vol. 33, no. 5, pp. 590–593.

    Article  CAS  Google Scholar 

  12. Karpovich, I.A., Quantum engineering: self-organization of quantum dots, Sorosovskii obrazovatel’nyi zhurnal, 2001, vol. 7, no. 11, pp. 102–109.

    Google Scholar 

  13. Malachias, A., Neves, B.R.A., Rodrigues, W.N., et al., X-ray scattering from self-assembled InAs islands, Braz. J. Phys., 2004, vol. 34, no. 2B, pp. 571–576.

    Article  CAS  Google Scholar 

  14. Blinov, L.M., Langmuir films, Usp. Fiz. Nauk, 1988, vol. 155, no. 3, pp. 443–480.

    Article  CAS  Google Scholar 

  15. Krivoglaz, M.A., Difraktsiya rentgenovskikh luchei i neitronov v neideal’nykh kristallakh (Diffraction of X-Rays and Neutrons by Nonperfect Crystals), Kiev: Naukova Dumka, 1983.

    Google Scholar 

  16. Matsushita, T., and Hashizume, H.-O., Handbook on Synchrotron Radiation, vol. 1., E.E. Koch, Ed., Amsterdam: North Holland, 1983.

  17. Afanas’ev, A.M., Aleksandrov, P.A., and Imamov, R.M., Rentgenovskaya diagnostika submikronnykh sloev (X-Ray Diagnostics of Submicron Layers), Moscow: Nauka, 1989.

    Google Scholar 

  18. Brühl, H.-G., Baumbach, T., Gottschalch, V., et al., Extreme asymmetric X-ray Bragg reflection of semiconductor hetero-structures near the edge of total external reflection, J. Appl. Crystallogr., 1990, vol. 23, no. 4, pp. 228–233.

    Article  Google Scholar 

  19. Tanner, B.K. and Hill, M.J., Double axis x-ray diffractometry at glancing angles, J. Phys. D: Appl. Phys., 1986, vol. 19, no. 12, pp. L229–L235.

    Article  CAS  Google Scholar 

  20. Lucas, C.A., Hatton, P.D., Bates, S., et al., Characterization of nanometer-scale epitaxial structures by grazing-incidence X-ray diffraction and specular reflectivity, J. Appl. Phys., 1988, vol. 63, no. 6, pp. 1936–1941.

    Article  CAS  Google Scholar 

  21. Golovin, A.L. and Pietsch, U., X-ray investigations of submicro-meter layer heteroctructures, Phys. Status Solidi A, 1986, vol. 96, no. 2, pp. K111–K115.

    Article  CAS  Google Scholar 

  22. Bowen, D.K. and Tanner, B.K., High-Resolution X-Ray Diffractometry and Topography, London: Taylor and Francis, 1998.

    Google Scholar 

  23. Tapfer, L. and Ploog, K., X-ray interference in ultrathin epitaxial layers: A versatile method for the structural analysis of single quantum wells and heterointerfaces, Phys. Rev, 1989, vol. 40, no. 14, pp. 9802–9810.

    Article  CAS  Google Scholar 

  24. Faleev, N.N., Musikhin, Yu.G., Suvorova, A.A., et al., Anisotropy of spatial distribution of In(Ga)As quantum dots in In(Ga)As/GaAs multilayer heterostructures studied by X-ray and synchrotron diffraction and transmission electron microscopy, Semiconductors, 2001, vol. 35, no. 8, pp. 932–940.

    Article  CAS  Google Scholar 

  25. Matsushita, T., Ishikawa, T., and Kohra, K., High-resolution measurements of angle-resolved X-ray scattering from optically flat mirrors, J. Appl. Crystallogr., 1984, vol. 17, no. 4, pp. 257–264.

    Article  CAS  Google Scholar 

  26. Kazimirov, A.Yu., Kovalchuk, M.V., and Kohn, V.G., Investigation of surface-layer structure of single crystals with triple-crystal X-ray diffractometry, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1990, vol. 46, no. 8, pp. 643–649.

    Article  Google Scholar 

  27. Hayashi, M.A. and Marcon, R., High resolution X-Ray diffraction to characterize semiconductor materials, Revista Physicae, 2000, vol. 1, pp. 21–27.

    Google Scholar 

  28. Cohen, G.M., Mooney, P.M., Park, H., et al., High-resolution X-ray diffraction for characterization and monitoring of silicon-on-insulator fabrication processes, J. Appl. Phys., 2003, vol. 93, no. 1, pp. 245–250.

    Article  CAS  Google Scholar 

  29. Lomov, A.A., Bellet, D., and Dolino, G., X-Ray diffraction study of thin porous silicon layers, Phys. Status Solidi B, 1995, vol. 190, no. 1, pp. 219–226.

    Article  CAS  Google Scholar 

  30. Afanas’ev, M.A., Imamov, P.M., Pashaev, E.M., et al., XRD study of quantum well heterostructures, Russ. Microelectron., 2003, vol. 32, no. 4, pp. 219–223.

    Article  Google Scholar 

  31. Pashaev, E.M., Yakunin, S.N., Zaitsev, A.A., et al., Characterization of selectively doped InAs quantumdot GaAs-based multilayer heterostructures by high-resolution x-ray diffraction, Russ. Microelectron., 2002, vol. 31, no. 5, pp. 310–317.

    Article  CAS  Google Scholar 

  32. Kuznetsov, G.F., The least number of pairs of layers needed for observation of satellite-structured X-ray diffraction in super-lattices. Measurements and calculations of elastic stresses in alternate layers of super-lattices, Semiconductors, 2009, vol. 43, no. 2, pp. 245–252.

    Article  CAS  Google Scholar 

  33. Takagi, S., Dynamical theory of diffraction applicoble to crystals with any kind of small distortions, Acta Crystallogr., 1962, vol. 15, no. 12, pp. 1311–1323.

    Article  CAS  Google Scholar 

  34. Taupin, D., Dynamic theory of x-ray diffraction in crystals, Bull. Soc. Fr. Mineral. Crystallogr., 1964, vol. 87, pp. 469–511.

    CAS  Google Scholar 

  35. Imamov, R.M. and Subbotin, I.A., X-ray diagnostics of semiconductor heterostructures: Some achievements and perspectives for development, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2010, no. 1, pp. 104–121.

    Google Scholar 

  36. Yakimov, S.S., Chaplanov, V.A., Afanas’ev, M.A., et al., Angstrom resolution on determination of subsurface crystal layer structure by X-ray diffraction method, Pis’ma Zh. Eksp. Teor. Fiz., 1984, vol. 39, no. 1, pp. 3–5.

    CAS  Google Scholar 

  37. Afanas’ev, A.M. and Melikyan, O.G., Modified dynamic theory for highly asymmetric diffraction schemes, Kristallografiya, 1989, vol. 34, no. 1, pp. 28–33.

    Google Scholar 

  38. Aleksandrov, P.A., Melkonyan, M.K., and Stepanov, S.A., Structures of wave fields on X-ray diffraction in conditions of total external reflection, Kristallografiya, 1984, vol. 29, no. 2, pp. 376–378.

    CAS  Google Scholar 

  39. Jach, T., Cowan, P.L., Shen, Q., et al., Dynamical diffraction of x-rays at grazing angle, Phys. Rev., 1989, vol. 39, no. 9, pp. 5739–5747.

    Article  Google Scholar 

  40. Aleksandrov, P.A., Afanas’ev, A.M., Golovin, A.L., et al., A new method for surface analysis of crystals using X-ray diffraction under the specular reflection conditions, J. Appl. Crystallogr., 1985, vol. 18, no. 1, pp. 27–32.

    Article  CAS  Google Scholar 

  41. Golovin, A.L. and Melikyan, O.G., Reconstruction of structural distortions of ultrathin subsurface silicon crystal layer from the data on X-ray diffraction at conditions of grazing incidence, Zh. Tekh. Fiz., 1990, vol. 60, no. 11, pp. 116–123.

    Google Scholar 

  42. Kondrashkina, E.A., Stepanov, S.A., Schmidbauer, M., et al., High-resolution grazing-incidence X-ray diffraction for characterization of defects in crystal surface layers, J. Appl. Phys., 1997, vol. 81, no. 1, pp. 175–183.

    Article  CAS  Google Scholar 

  43. Kimura, M., X-ray evanescent diffraction: application to metal surfaces, Rigaku J., 1999, vol. 16, no. 1, pp. 25–31.

    CAS  Google Scholar 

  44. Pitch, U., Investigations of semiconductor surfaces and interfaces by X-ray grazing incidence diffraction, Curr. Sci., 2000, vol. 78, no. 12, pp. 1484–1495.

    Google Scholar 

  45. Stetsko, Yu.P., Kshevetskii, S.A., and Mikhailyuk, I.P., Determination of lattice parameter of the crystals at conditions of extreme (θ = 90°) diffraction, Pis’ma Zh. Tekh. Fiz., 1988, vol. 14, no. 1, pp. 29–39.

    CAS  Google Scholar 

  46. Golovin, A.L., Imamov, R. M., and Kondrashkina, E.A., Absolute measurements of lattice spacing surface layers of crystals, Phys. Status Solidi A, 1985, vol. 89, no. 1, pp. K5–K7.

    Article  CAS  Google Scholar 

  47. Golovin, A.L. and Imamov, R. M., Obtaining quantitative information on amorphous layer thickness on crystal surface using X-ray diffraction under specular reflection conditions, Phys. Status Solidi A, 1983, vol. 80, no. 2, pp. K63–K65.

    Article  CAS  Google Scholar 

  48. Bushuev, V.A., Imamov, R.M., Mukhamedzhanov, E.X., et al., Determination of the thickness of ultrathin surface films from the data on X-ray specular reflection under conditions of non-coplanar diffraction, Poverkhnost, 2002, no. 1, pp. 22–26.

    Google Scholar 

  49. Bushuev, V.A., Imamov, R.M., Mukhamedzhanov, E.Kh., et al., Detection of ultrathin amorphous layers by means of specular reflection under grazing-incidence diffraction conditions, J. Phys. D: Appl. Phys., 2002, vol. 35, pp. 1422–1427.

    Article  CAS  Google Scholar 

  50. Golovin, A.L., Imamov, R. M., and Kondrashkina, E.A., Potentialities of new X-ray diffraction methods in structural studies of ion-implanted silicon layers, Phys. Status Solidi A, 1985, vol. 88, no. 2, pp. 505–514.

    Article  CAS  Google Scholar 

  51. Rugel, S., Wallner, G., Metzger, H., et al., Grazingincidence X-ray diffraction on ion-implanted silicon, J. Appl. Crystallogr., 1993, vol. 26, no. 1, pp. 34–40.

    Article  CAS  Google Scholar 

  52. Imamov, R.M., Kondrashkina, E.A., and Aleksandrov, P.A., Investigation of Si subsurface layers implanted with ions by the method of X-ray diffraction under conditions of total external reflection, Poverkhnost’, 1987, no. 3, pp. 41–47.

    Google Scholar 

  53. Aleksandrov, P.A., Afanas’ev, A.M., and Stepanov, S.A., X-ray diffraction under conditions of total external reflection from surface crystalline film, Poverkhnost’, 1984, no. 8, pp. 9–18.

    Google Scholar 

  54. Omote, K. and Harada, J., Grazing incidence X-ray diffractometer for determining in-plane structure of thin films, Adv. X-Ray Anal., 2000, vol. 43, pp. 192–200.

    Google Scholar 

  55. Fujii, Y., Komai, T., and Ikeda, K., Depth profiling of polycrystalline layers under a surface using x-ray diffraction at small glancing angle of incidence, Surf. Interface Anal., 2005, vol. 37, no. 2, pp. 190–193.

    Article  CAS  Google Scholar 

  56. Tanner, B.K., Hase, T.P.A., and Lafford, T.A., Grazing incidence in-plane X-ray diffraction in the laboratory, Adv. X-Ray Anal., 2004, vol. 47, pp. 309–314.

    CAS  Google Scholar 

  57. Dutta, P., Grazing incidence X-ray diffraction, Curr. Sci., 2000, vol. 78, no. 12, pp. 1478–1483.

    CAS  Google Scholar 

  58. Williams, A.A., Thornton, J.M.C., Macdonald, J.E., et al., Strain relaxation during the initial stages of growth in Ge/Si(001), Phys. Rev. B: Solid State, 1991, vol. 43, no. 6, 5001–5011.

    Article  CAS  Google Scholar 

  59. Segmuller, A., Characterization of epitaxial films by grazing-incidence X-ray diffraction, http://www.sciencedirect.com/science/article/pii/004060908790349X-item1#-tem1, Thin Solid Films, 1987, vol. 154, nos. 1–2, pp. 33–42.

    Article  CAS  Google Scholar 

  60. Rhan, H. and Pietsch, U., Investigation of nanometer layer heterostructures by X-ray grazing incidence diffraction, Phys. Status Solidi A, 1988, vol. 107, no. 2, pp. K93–K98.

    Article  Google Scholar 

  61. Golovin, A.L. and Pietsch, U., X-ray investigations of submicrometer layer heteroctructures, Phys. Status Solidi A, 1986, vol. 96, no. 2, pp. K111–K115.

    Article  CAS  Google Scholar 

  62. Pietsch, U., Rhan, H., Golovin, A.L., et al., Differential-mode grazing-incidence diffraction from nanometer-layer hetero-structures, Semicond. Sci. Technol., 1991, vol. 6, pp. 743–747.

    Article  CAS  Google Scholar 

  63. Holý, V., Pietsch, U., and Baumbach, T., High resolution X-ray scattering from thin films and multilayers, Springer Tracts Mod. Phys., vol. 149, New York: Springer, 1999.

    Google Scholar 

  64. Pietsch, U., Metzger, H., Rugel, S., et al., Depthresolved measurement of lattice relaxation in Ga1 − x InxAs/GaAs strained layer by means of grazing-incidence X-ray diffraction, J. Appl. Phys., 1993, vol. 74, pp. 2381–2387.

    Article  CAS  Google Scholar 

  65. Rose, D., Pietsch, U., Förster, A., et al., Depth-resolved investigations of the relaxation behaviour in strained GalnAs/GaAs superlattices using grazing incidence X-ray diffraction, Nucl. Instrum. Methods Phys. Res., Sect. B, 1995, vol. 97, nos. 1–4, pp. 333–336.

    Article  CAS  Google Scholar 

  66. Stepanov, S.A., Kondrashkina, E.A., and Köhler, R., et al., Dynamical X-ray diffraction of multilayers and superlattices: Recursion matrix extension to grazing angles, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, no. 8, pp. 4829–4841.

    Article  CAS  Google Scholar 

  67. Aleksandrov, P.A., Afanasiev, A.M., and Stepanov, S.A., Bragg-Laue diffraction in inclined geometry, Phys. Status Solidi A, 1984, vol. 86, no. 1, pp. 143–154.

    Article  CAS  Google Scholar 

  68. Afanasiev, A.M., Afanasiev, S.M., Aleksandrov, P.A., et al., Grazing Bragg-Laue diffraction for studying the crystal structure of thin films, Phys. Status Solidi A, 1984, vol. 86, no. 1, pp. K1–K5.

    Article  Google Scholar 

  69. Bushuev, V.A. and Oreshko, A.P., Specular X-ray reflection form a crystal coated with an amorphous film under the conditions for strongly asymmetric noncoplanar diffraction, Phys. Solid State, 2001, vol. 43, no. 5, pp. 941–948.

    Article  CAS  Google Scholar 

  70. Afanas’ev, A.M., Aleksandrov, P.A., Immamov, R.M., et al., Three-crystal diffractometry in grazing Bragg-Laue geometry, Acta Crystallogr., Sect. A: Found. Crystallogr., 1985, vol. 41, no. 3, pp. 227–232.

    Article  Google Scholar 

  71. Zhang, K., Falta, J., Schmidt, Th., et al., Distribution and shape of self-assembled InAs quantum dots grown on GaAs (001), Pure Appl. Chem., 2000, vol. 72, nos. 1–2, pp. 199–207.

    CAS  Google Scholar 

  72. Stangl, J., Holy, V., and Bauer, G., Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., 2004, vol. 76, no. 3, pp. 725–782.

    Article  CAS  Google Scholar 

  73. Schmidbauer, M., Hanke, M., and Köhler, R., Asymmetric correlation function describing the positional ordering of liquid-phase-epitaxy Si-Ge nanoscale islands, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, no. 11, pp. 115323-1–115323-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lider.

Additional information

Original Russian Text © V.V. Lider, 2013, published in Zavodskaya Laboratoriya. Diagnostika Materialov, 2013, Vol. 79, No. 8, pp. 24–34.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lider, V.V. X-ray diffraction methods for diagnostics of surface and nanolayers of crystalline structures (review). Inorg Mater 50, 1459–1469 (2014). https://doi.org/10.1134/S0020168514150072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514150072

Keywords

Navigation