Log in

Effect of Flow Swirling on Heat Transfer in Gas-Droplet Flow Downstream of Abrupt Pipe Expansion

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The effect the flow swirl parameter on heat transfer in a gas-droplet flow is numerically modeled by the Euler approach. The gaseous phase is described by a system of 3D RANS equations with consideration of the back effect of particles on transfer processes in the carrier phase. The gaseous phase turbulence is calculated according to the Reynolds stress transport model with consideration of the dispersed phase effect on the turbulent characteristics. A rapid dispersion of droplets over the pipe cross section is observed in a nonswirling gas-droplet flow downstream of an abrupt pipe expansion. A swirling flow is characterized by a growing concentration of fine particles at the pipe axis due to the accumulation of particles in the zone of flow recirculation and to the turbophoresis force. In a swirling flow, the separated-flow region becomes significantly shorter (by almost a factor of two as compared to that in a nonswirling flow). It is shown that addition of droplets results in a significant growth of heat transfer intensity (by more than a factor of 2.5) in comparison with single-phase swirling flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kutateladze, S.S., Volchkov, E.P., and Terekhov, V.I., Aerodinamika i teplomassoobmen v ogranichennykh vikhrevykh potokakh (Aerodynamics and Heat and Mass Transfer in Confined Vortex Flows), Novosibirsk: Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, 1987.

    Google Scholar 

  2. Gupta, A.K., Lilley, D.G., Syred, N., Swirl Flows, Tunbridge Wells: Abacus, 1984.

    Google Scholar 

  3. Khalatov, A.A., Teoriya i praktika zakruchennykh potokov (Theory and Practice of Swirling Flows), Kiev: Naukova dumka, 1989.

    Google Scholar 

  4. Hishida, K., Nagayasu, T., and Maeda, M., Int. J. Heat Mass Transfer, 1995, vol. 38, p. 1773.

    Article  Google Scholar 

  5. Senaha, I., Miyafuji, Y., Kato, S., Higa, M., and Yaga, M., Trans. Jpn. Soc. Mech. Eng., B, 2013, vol. 79, p. 1816.

    Article  Google Scholar 

  6. Pakhomov, M.A. and Terekhov, V.I., Int. J. Heat Mass Transfer, 2013, vol. 66, p. 210.

    Article  Google Scholar 

  7. Varaksin, A.Yu. and Zaichik, L.I., High Temp., 1998, vol. 36, no. 6, p. 983.

    Google Scholar 

  8. Zaichik, L.I. and Varaksin, A.Yu., High Temp., 1999, vol. 37, no. 4, p. 655.

    Google Scholar 

  9. Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.

    Article  Google Scholar 

  10. Klose, G., Schmehl, R., Meier, R., Maier, G., Koch, R., Wittig, S., Hettel, M., Leuckel, W., and Zarzalis, N., J. Eng. Gas Turbines Power, 2001, vol. 123, p. 817.

    Article  Google Scholar 

  11. Sankaran, V. and Menon, S., J. Turbul., 2002, vol. 3, paper 011.

  12. Sadiki, A., Chrigui, M., Janicka, J., and Maneshkarimi, M.R., Flow, Turbul. Combust., 2005, vol. 75, p. 105.

    Article  Google Scholar 

  13. Sanjose, M., Senoner, J.M., Jaegle, F., Cuenot, B., Moreau, S., and Poinsot, T., Int. J. Multiphase Flow, 2011, vol. 37, p. 514.

    Article  Google Scholar 

  14. Durdina, L., Jedelsky, J., and Jicha, M., Int. J. Heat Mass Transfer, 2014, vol. 78, p. 892.

    Article  Google Scholar 

  15. Jakirlic, S., Hanjalic, K., and Tropea, C., AIAA J., 2002, vol. 40, p. 1984.

    Article  ADS  Google Scholar 

  16. Manceau, R. and Hanjalic, K., Phys. Fluids, 2002, vol. 14, p. 744.

    Article  ADS  Google Scholar 

  17. Beishuizen, N., Naud, B., and Roekaerts, D., Flow, Turbul. Combust., 2007, vol. 79, p. 321.

    Article  Google Scholar 

  18. Zaichik, L.I., Phys. Fluids, 1999, vol. 11, p. 1521.

    Article  ADS  Google Scholar 

  19. Derevich, I.V., High Temp., 2002, vol. 40, no. 1, p. 78.

    Article  Google Scholar 

  20. Hanjalic, K. and Jakirlic, S., Comput. Fluids, 1998, vol. 27, p. 137.

    Article  Google Scholar 

  21. Vinberg, A.A., Zaichik, L.I., and Pershukov, V.A., Fluid Dyn. (Engl. Transl.), 1994, vol. 29, no. 1, p. 55.

    Article  ADS  Google Scholar 

  22. Dellenback, P.A., Metzger, D.E., and Neitzel, G.P., AIAA J., 1989, vol. 26, p. 669.

    Article  ADS  Google Scholar 

  23. Sommerfeld, M. and Qiu, H.-H., Int. J. Heat Fluid Flow, 1991, vol. 12, p. 20.

    Article  Google Scholar 

  24. Sommerfeld, M. and Qiu, H.-H., Int. J. Multiphase Flow, 1993, vol. 19, p. 1093.

    Article  Google Scholar 

  25. Pakhomov, M.A. and Terekhov, V.I., Therophys. Aeromech., 2015, vol. 22, no. 5, p. 597.

    Article  ADS  Google Scholar 

  26. Fessler, J.R. and Eaton, J.K., J. Fluid Mech., 1999, vol. 314, p. 97.

    Article  ADS  Google Scholar 

  27. Garcia-Rosa, N., Phenomenes d’allumage d’un foyer de turbomachine en conditions de haute altitude, Ph.D. Thesis, Toulouse, France: Univ. Toulouse, Institut Superieur de l’Aeronautique et de l’Espace, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pakhomov.

Additional information

Original Russian Text © M.A. Pakhomov, V.I. Terekhov, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 3, pp. 431–438.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Effect of Flow Swirling on Heat Transfer in Gas-Droplet Flow Downstream of Abrupt Pipe Expansion. High Temp 56, 410–417 (2018). https://doi.org/10.1134/S0018151X18020177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18020177

Navigation