Log in

Direct and Indirect Effects of an Electron Beam on N,N,N',N'-Tetra-n-Octyl Diglycolamide in Hydrocarbon–Alcohol Solutions

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The radiolysis of a radiochemical extraction system based on N,N,N',N'-tetra-n-octyl diglycolamide (TODGA) dissolved (0.15–0.2 M) in a mixture of Isopar-M with n-decanol or n-nonanol has been studied. The alcohol content was 6 or 20 vol %. A beam of 8-MeV electrons was used for irradiation. It has been found that the predominant radiolytic transformation of TODGA is fragmentation with the major formation of N,N-dioctylacetamide and 2-hydroxy-N,N-dioctylacetamide. Products of the dissociative addition of alkoxy radicals to the carbonyl groups of TODGA were detected. The total yield of TODGA degradation in the extraction system was no higher than 0.5 μmol/J. Degradation was insensitive to the type of alcohol, but it depended on the alcohol content of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mincher, B.J., Reprocessing and Recycling of Spent Nuclear Fuel, Taylor, R., Ed., Amsterdam: Elsevier–Woodhead Publishing, 2015, p. 191. https://doi.org/10.1016/B978-1-78242-212-9.00008-3

  2. Sugo, Y., Izumi, Y., Yoshida, Y., Nishijima, S., Sasaki, Y., Kimura, T., Sekine, T., and Kudo, H., Radiat. Phys. Chem., 2007, vol. 76, p. 794. https://doi.org/10.1016/j.radphyschem.2006.05.008

  3. Leoncini, A., Ansari, S.A., Mohapatra, P.K., Boda, A., Ali, S.M., Sengupta, A., Huskens, J., and Verboom, W., Dalton Trans., 2017, vol. 46, p. 1431. https://doi.org/10.1039/C6DT04034A

  4. Sasaki, Y., Sugo, Y., Suzuki, S., and Tachimori S. Solvent, Extr. Ion Exch., 2001, vol. 19, no. 2001, p. 91. https://doi.org/10.1081/SEI-100001376

  5. Ansari, S.A., Pathak, P.N., Manchanda, V.K., Husain, M., Prasad, A.K., and Parmar, V.S., Solvent Extr. Ion Exch., 2005, vol. 23, no. 2005, p. 463. https://doi.org/10.1081/SEI-200066296

  6. Iqbal, M., Huskens, J., Verboom, W., Sypula, M., and Modolo, G., Supramol. Chem., 2010, vol. 22, p. 827. https://doi.org/10.1080/10610278.2010.506553

  7. Whittaker, D., Geist, A., Modolo, G., Taylor, R., Sarsfield, M., and Wilden, A., Solvent Extr. Ion Exch., 2018, vol. 36, no. h. 2018, p. 223. https://doi.org/10.1080/07366299.2018.1464269

  8. Skvortsov, I.V., Belova, E.V., and Yudintsev, S.V., Nucl. Eng. Technol., 2020, vol. 52, p. 2034. https://doi.org/10.1016/j.net.2020.02.024

  9. Nikitina, Yu.V., Yudin, N.V., Belova, E.V., and Ponomarev, A.V., J. Radioanal. Nucl. Chem., 2020, vol. 326, p. 1185. https://doi.org/10.1007/s10967-020-07375-3

  10. Zarzana, C.A., Groenewold, G.S., Mincher, B.J., Mezyk, S.P., Wilden, A., Schmidt, H., Modolo, G., Wishart, J.F., and Cook, A.R., Solvent Extr. Ion Exch., 2015, vol. 33, no. 2015, p. 431. https://doi.org/10.1080/07366299.2015.1012885

  11. Zsabka, P., van Hecke, K., Wilden, A., Modolo, G., Hupert, M., Jespers, V., Voorspoels, S., Verwerft, M., Binnemans, K.,and Cardinaels, T., Solvent Extr. Ion Exch., 2020, vol. 38, no. 2020, p. 212. https://doi.org/10.1080/07366299.2019.1710918

  12. Metreveli, A.K. and Ponomarev, A.V., High Energy Chem., 2016, vol. 50, p. 97. https://doi.org/10.1134/S0018143916020053

  13. Ponomarev, A.V., Vlasov, S.I., and Kholodkova, E.M., High Energy Chem., 2019, vol. 53, p. 314. https://doi.org/10.1134/S0018143919040106

  14. Cserep, G., Gyorgy, I., Roder, M., and Wojnarovits, L., Radiation Chemistry of Hydrocarbons, Budapest: Akademiai Kiado, 1981.

    Google Scholar 

  15. Woods, R.J. and Pikaev, A.K., Applied Radiation Chemistry: Radiation Processing, New York: Wiley–Interscience, 1994.

    Google Scholar 

  16. Rauk, A., Boyd, R.J., Boyd, S.L., Henry, D.J., and Radom, L., Can. J. Chem., 2003, vol. 81, p. 431. https://doi.org/10.1139/v02-206

  17. Ponomarev, A.V., Vlasov, S.I., Kholodkova, E.M., Chulkov, V.N., and Bludenko, A.V., Radiat. Phys. Chem., 2019, vol. 165, p. 108405. https://doi.org/10.1016/j.radphyschem.2019.108405

  18. Sugo, Y., Sasaki, Y., and Tachimori, S., Radiochim. Acta, 2002, vol. 90, p. 161. https://doi.org/10.1524/ract.2002.90.3_2002.161

  19. Ponomarev, A.V. and Kholodkova, E.M., Mendeleev Commun., 2018, vol. 28, p. 375. https://doi.org/10.1016/j.mencom.2018.07.011

  20. Grajales-González, E., Monge-Palacios, M., and Sarathy, S.M., J. Phys. Chem. A, 2018, vol. 122, p. 3547. https://doi.org/10.1021/acs.jpca.8b00836

  21. Emel’yanov, A.S., Belova, E.V., Ponomarev, A.V., and Myasoedov, B.F., Radiochemistry, 2020, vol. 62, p. 587. https://doi.org/10.1134/S1066362220050045

Download references

ACKNOWLEDGMENTS

We are grateful to the Shared-Use Center for Instrumental Research Methods at the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences for the equipment provided.

Funding

This work was funded by the Russian Academy of Sciences, project no. AAAA-A18-118011190130-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ponomarev.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serenko, Y.V., Ponomarev, A.V. & Belova, E.V. Direct and Indirect Effects of an Electron Beam on N,N,N',N'-Tetra-n-Octyl Diglycolamide in Hydrocarbon–Alcohol Solutions. High Energy Chem 55, 482–487 (2021). https://doi.org/10.1134/S0018143921060114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921060114

Keywords:

Navigation