Log in

Equatorial Plasma Bubbles: Occurrence Probability versus Local Time

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The character of the variability of the LT distributions of the equatorial plasma bubble occurrence probability with an increase of the recording altitude is under consideration. The conditions of the high and maximal solar activity, when the generation of the plasma bubbles is the most active, are examined. For this purpose the detailed comparative analysis of the LT distributions of the equatorial plasma bubble occurrence probability derived from the ISS-b (~972–1220 km), Hinotori (~650 km), ROCSAT-1 (~600 km), AE-E (~300–475 km), and CHAMP (~380–450 km) satellite data was done. The pronounced trend of the local time shift of the bubble occurrence probability maximum with an increase of the altitude is revealed. Thus, if the maximum occurs after sunset (~2030–2200 LT) at the bottom-side of the F-layer, it shifts toward the premidnight (~2100–2400 LT, ~600 km), then to the postmidnight (~0100–0300 LT, ~650 km), and, finally, to the predawn hours (~0300–0400 LT, ~972–1220 km) as the observation altitude increases. The most typical velocities of the equatorial plasma bubble rise are found to be ~150–300 m/s, which correspond to the numerous observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abdu, M.A., de Medeiros, R.T., Sobral, J.H.A., et al., Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations, J. Geophys. Res., 1983, vol. 88, pp. 9197–9204.

    Article  Google Scholar 

  2. Abdu, M.A., Sobral, J.H.A., and Batista, I.S., Equatorial spread F statistics in the American longitudes: some problems relevant to ESF description in the IRI scheme, Adv. Space Res., 2000, vol. 25, pp. 113–124.

    Article  Google Scholar 

  3. Aggson, T.L., Maynard, N.C., Hanson, W.B., et al., Electric field observations of equatorial bubbles, J. Geophys. Res., 1992, vol. 97, pp. 2997–3009.

    Article  Google Scholar 

  4. Burke, W.J., Donatelli, D.E., Sagalyn, R.C., et al., Low density regions observed at high altitudes and their connection with equatorial spread F,Planet. Space Sci., 1979, vol. 27, pp. 593–601.

    Article  Google Scholar 

  5. Gentile, L.C., Burke, W.J., and Rich, F.J., A climatology of equatorial plasma bubbles from DMSP 1989–2004, Radio Sci., 2006, vol. 41, RS5S21. https://doi.org/10.1029/2005RS003340

    Article  Google Scholar 

  6. Hanson, W.B., Coley, W.R., Heelis, R.A., et al., Fast equatorial bubbles, J. Geophys. Res., 1997, vol. 102, no. A2, pp. 2039–2045.

    Article  Google Scholar 

  7. Huang, C.-S., de la Beaujardiere, O., Roddy, P.A., et al., Evolution of equatorial ionospheric plasma bubbles and formation of broad plasma depletions measured by the C/NOFS satellite during deep solar minimum, J. Geophys. Res., 2011, vol. 116, A03309. https://doi.org/10.1029/2010JA015982

    Article  Google Scholar 

  8. Huba, J.D., Joyce, G., and Krall, J., Three-dimensional equatorial spread F modeling, Geophys. Res. Lett., 2008, vol. 35, L10102. https://doi.org/10.1029/2008GL033509

    Article  Google Scholar 

  9. Kil, H. and Heelis, R.A., Global distribution of density irregularities in the equatorial ionosphere, J. Geophys. Res., 1998, vol. 103, no. A1, pp. 407–417.

    Article  Google Scholar 

  10. Kil, H., Heelis, R.A., Paxton, L.J., et al., Formation of a plasma depletion shell in the equatorial ionosphere, J. Geophys. Res., 2009, vol. 114, A11302. https://doi.org/10.1029/2009JA014369

    Article  Google Scholar 

  11. McClure, J.P., Hanson, W.B., and Hoffman, J.F., Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 1977, vol. 82, no. 19, pp. 2650–2656.

    Article  Google Scholar 

  12. Narayanan, V.L., Gurubaran, S., and Shiokawa, K., Direct observational evidence for the merging of equatorial plasma bubbles, J. Geophys. Res., 2016, vol. 121, no. 19, pp. 7923–7931. https://doi.org/10.1002/2016JA02286

    Article  Google Scholar 

  13. Ossakov, S.L. and Chaturvedi, P.K., Morphological studies of rising equatorial spread F bubbles, J. Geophys. Res., 1978, vol. 83, no. 5, pp. 2085–2090.

    Article  Google Scholar 

  14. Ott, E., Theory of Rayleigh–Taylor bubbles in the equatorial ionosphere, J. Geophys. Res., 1978, vol. 83, no. A5, pp. 2066–2070.

    Article  Google Scholar 

  15. RRL. Summary Plots of Ionospheric Parameters Obtained from Ionosphere Sounding Satellite-B, Tokyo: Radio research Laboratories, Ministry of Posts and Telecommunications, 1983, vols. 1–3.

  16. RRL. Summary Plots of Ionospheric Parameters Obtained from Ionosphere Sounding Satellite-B, Tokyo: Radio research Laboratories, Ministry of Posts and Telecommunications, 1985, vol. 4.

  17. Sidorova, L.N. and Filippov, S.V., Longitudinal statistics of plasma bubbles observed as He+ density depletions at altitudes of the topside ionosphere, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 1, pp. 60–72.

  18. Sidorova, L.N. and Filippov, S.V., Topside ionosphere He+ density depletions: Seasonal/longitudinal occurrence probability, J. Atmos. Sol.-Terr. Phys., 2012, vol. 86, pp. 83–91. https://doi.org/10.1016/j.jastp.2012.06.013

    Article  Google Scholar 

  19. Smith, J. and Heelis, R.A., Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity, J. Geophys. Res., 2017, vol. 122, no. 5, pp. 5743–5755. https://doi.org/10.1002/2017JA024128

    Article  Google Scholar 

  20. Stolle, C., Lühr, H., Rother, M., et al., Magnetic signatures of equatorial spread F as observed by the CHAMP satellite, J. Geophys. Res., 2006, vol. 111, A02304. https://doi.org/10.1029/2005JA011184

    Article  Google Scholar 

  21. Su, S.-Y., Liu, C.H., Ho, H.H., et al., Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 2006, vol. 111, A06305. https://doi.org/10.1029/2005JA011330

    Article  Google Scholar 

  22. Tsunoda, R.T., Magnetic-field-aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere, J. Atmos. Terr. Phys., 1980, vol. 42, pp. 743–752.

    Article  Google Scholar 

  23. Tsunoda, R.T., Livingston, R.C., McClure, J.P., et al., Equatorial plasma bubbles: Vertical elongated wedges from the bottomside F layer, J. Geophys. Res., 1982, vol. 87, pp. 9171–9180.

    Article  Google Scholar 

  24. Watanabe, S. and Oya, H., Occurrence characteristics of low latitude ionospheric irregularities observed by impedance probe on board the Hinotori satellite, J. Geomagn. Geoelectr., 1986, vol. 38, pp. 125–131.

    Article  Google Scholar 

  25. Woodman, R.F. and La Hoz, C., Radar observations of F‑region equatorial irregularities, J. Geophys. Res., 1976, vol. 81, pp. 5447–5466.

    Article  Google Scholar 

  26. Yizengaw, E., Retterer, J., Pacheco, E.E., et al., Postmidnight bubbles and scintillations in the quiet-time June solstice, Geophys. Res. Lett., 2013, vol. 40, pp. 1–6. https://doi.org/10.1002/2013GL058307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Sidorova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorova, L.N. Equatorial Plasma Bubbles: Occurrence Probability versus Local Time. Geomagn. Aeron. 60, 530–537 (2020). https://doi.org/10.1134/S001679322005014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322005014X

Navigation