Log in

Thermal and Thermochemical Study of Thaumasite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A sample of natural thaumasite Ca3.0Si(OH)6(CO3)0.9(SO4)1.1·12.3H2O (N’Chwaning mine, Kalahari manganese ore field, South Africa) was studied by powder X-ray diffraction, infrared absorption and Raman spectroscopy, thermal analysis, and microcalorimetry. The process of thermal transformation of thaumasite was studied using the results of FTIR and Raman spectroscopy. The enthalpy of formation from elements ΔfH0(298.15 K) = −8816 ± 30 kJ/mol was determined by high-temperature melt solution calorimetry. The value of the absolute entropy was estimated, and the enthalpy and Gibbs energy of formation of thaumasite of theoretical composition were calculated: 945.4 ± 1.8 J/(mol K), −8699 ± 30 kJ/mol, −7577 ± 30 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Aguilera, M. T.B. Valera, and T. Vázquez, “Procedure of synthesis of thaumasite,” Cem. Concr. Res. 31, 1163–1168 (2001).

    Article  Google Scholar 

  2. S. J. Barnett, C. D. Adam, and A. R.W. Jackson, “Solid solutions between ettringite Ca6Al2(SO4)3(OH)12·26H2O, and thaumasite Ca3[Si(OH)6][SO4][CO3]·12H2O,” J. Mater. Sci. 35, 4109–4114 (2000).

    Article  Google Scholar 

  3. S. J. Barnett, D. E. Macphee, E. E. Lachowski, and N. J. Crammond, “XRD, EDX and IR analysis of solid solution between thaumasite and ettringite,” Cem. Concr. Res. 32, 719–730 (2002).

    Article  Google Scholar 

  4. S. M. Bazanov, “Mechanism of concrete destruction under sulfate influence,” Stroit. Mater., No. 9, 46–48 (2004).

  5. J. Bensted, “Thaumasite—background and nature in deterioration of cements, mortars and concretes,” Cem. Concr. Res. 21, 117–121 (1999).

    Article  Google Scholar 

  6. A. R. Brough and A. Atkinson, “Micro-Raman spectroscopy of thaumasite,” Cem. Concr. Res. 31, 421–424 (2001).

    Article  Google Scholar 

  7. A. S. Brykov, “Sulfate corrosion of Portland cement concrete,” Tsem. Ego Primen., No. 6, 96–103 (2014).

  8. N. V. Chukanov and M. F Vigasina, Vibrational (infrared and Raman) spectra of minerals and related Compounds (Springer Nature, 2020).

    Book  Google Scholar 

  9. N. V. Chukanov, Infrared Spectra of Mineral Species: Extended Library (Springer-Verlag, New York–London Dordrecht–Heidelberg–New, 2014).

  10. N. J. Crammond, “Thaumasite in failed cement mortars and renders from exposed brickwork,” Cem. Concr. Res. 15, 1039–1050 (1985).

    Article  Google Scholar 

  11. M. Drábic and L. Gálikova, “Method of thermal analysis in the detection of thaumasite and its presence in the sulphate-attacted concrete,” Solid State Phenom. 90–91, 33–38 (2003).

    Article  Google Scholar 

  12. M. Drábik, D. Tunega, S. Balkovic, and V. S. Fajnor, “Computer simulationnnnnnnns of hydrogen bonds for better understanding of the data of thermal analysis of thaumasite,” J. Therm. Anal. Calorim. 85 (2), 469–475 (2006).

    Article  Google Scholar 

  13. R. A. Edge and H. F.W. Taylor, “Crystal structure of thausmanite Ca3Si(OH)6 (SO4)(CO3),” Acta Crystal. B27, 594–601 (1971).

    Article  Google Scholar 

  14. M. Font-Altaba, “A thermal study of thaumasite,” Mineral. Mag. 32, 567–572 (1960).

    Google Scholar 

  15. G. D. Gatta, G. J. McIntyre, J. G. Swanson, and S. D. Jacobsen, “Minerals in cement chemistry: A single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6 (SO4)(CO3)·12H2O,” Am. Mineral. 97, 1060–1069 (2012).

    Article  Google Scholar 

  16. Yu. D. Gritsenko, S. K. Dedushenko, M. F. Vigasina, L. A. Pautov, Ya. V. Golubev, L. P. Ogorodova, D. A. Ksenofontov, L. V. Melchakova, and Yu. D. Perfil’ev, “Manganese sturmanite from the N’Chwanning mine 2, Kalahari, South African Republic,” Zap. Ross. Mineral. O-va 151 (2), 53–69 (2022).

    Google Scholar 

  17. O. Grubessi, A. Mottana, and E. Paris, “Thaumasite from the Tschwinning (N’Chwanning) mine, South Africa,” Tscherm. Mineral. Petrog. Mitt. 35, 149–156 (1986).

    Article  Google Scholar 

  18. S. A. Hartshorn, J. H. Sharp, and R. N. Swamy, “Thaumasite formation in portland-limestone cement pastes – A cause of deterioration of Portland cement and related substances in the presence sulphates,” Cem. Concr. Res. 29 (8), 1331–1240 (1999).

    Article  Google Scholar 

  19. IMA List of Minerals. http://cnmnc.main.jp/IMA_Master_ List IMA_(2021–11) (2021-11).pdf

  20. S. D. Jacobsen, J. R. Smyth, and R. J. Swope, “Thermal expansion of hydrated six-coordinate silicon in thaumasite, Ca3[Si(OH)6][SO4][CO3]·12H2O,” Phys. Chem. Minerals 30, 321–329 (2003).

    Article  Google Scholar 

  21. G. N. Kirov and C. N. Poulieff, “On the infra-red spectrumand thermal decomposition products of thaumasite, Ca3H2(CO3/SO4)SiO4·13H2O,” Mineral. Mag. 36, 1003–1011 (1968).

    Google Scholar 

  22. I. A. Kiseleva, A. R. Kotelnikov, K. V. Martynov, L. P. Ogorodova, and Yu. K. Kabalov, “Thermodynamic properties of strontianite–witherite solid solution (Sr,Ba)CO3,” Phys. Chem. Minerals 21, 392–400 (1994).

    Article  Google Scholar 

  23. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the SaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  24. B. Kostova, V. Petkova, Vl. Kostov-Kytin, Y. Tzvetlanova, and G. Avdeev, “TG/DTG/DSC and high temperature in situ XRD analysis of natural thaumasite,” Thermochim. Acta 697, # 178863 (2021).

  25. A. R. Kotel’nikov, Yu K. Kabalov, T. N. Zezyulya, L. V. Mel’chakova, and L. P. Ogorodova, “Experimental study of celestine-barite solid solution,” Geochem. Int. 38 (12), 1181–1187 (2000).

    Google Scholar 

  26. P. Kresten and G. Berggren, “The thermal decomposition of thaumasite from Mothae kimberlite pipe, Lesotho, South Africa,” J. Thermal Anal. 9, 23–28 (1976).

    Article  Google Scholar 

  27. D. Kulik, “GEMS-PSI 2.1, PSI, Villigen, Switzerland (2006). http://leswebpsi.ch/software/GEMS–PSI

  28. M. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” Am. Mineral. 92, 1–18 (2007).

    Article  Google Scholar 

  29. B. Lothenbach, D. A. Kulik, T. Matschei, M. Balonis, L. Baquerizo, B. Dilnesa, G. D. Miron, and R. J. Myers, “Gemdata 18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials,” Cem. Concr. Res. 115, 472–506 (2019).

    Article  Google Scholar 

  30. B. Lothenbach and F. Winnefeld, “Thermodynamic modeling of the hydration of Portland cement,” Cem. Concr. Res. 36 (2), 209–226 (2006).

    Article  Google Scholar 

  31. D. E. Macphee and S. J. Barnett, “Solution proprties of solids in the ettringite—thaumasite solid solution series,” Cem. Concr. Res. 34, 1591–1598 (2004).

    Article  Google Scholar 

  32. S. Martinez-Ramirez, M. T. Blanco-Valera, and J. Rapazote, “Thaumasite formation in sugary solutions: Effect of temperature and sucrose concentration,” Constr. Build. Mater. 25, 21–29 (2011).

    Article  Google Scholar 

  33. A. Martucci and G. Cruciani, “In situ time resolved synchrotron powder diffraction study of thaumasite,” Phys. Chem. Minerals 33, 723–731 (2006).

    Article  Google Scholar 

  34. L. P. Ogorodova, Yu. D. Gritsenko, D. A. Kosova, M. F. Vigasina, L. V. Melchakova, D. A. Ksenofontov, and S. K. Dedushenko, “Physicochemical and thermochemical study of ettringite,” Geochem. Int. 59 (12), 1188–1198 (2021).

    Article  Google Scholar 

  35. L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric determination of the enthalpy of formation for pyrophyllite,” Russ. J. Phys. Chem. 85 (9), 1609–1611 (2011).

    Article  Google Scholar 

  36. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  37. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull., No. 2131, (1995).

  38. T. Schmidt, B. Lothenbach, M. Romer, K. Scrivener, D. Rentsch, and R. Figi, “A thermodynamic and experimental study of the conditions of thaumasite formation,” Cem. Concr. Res. 38, 337–349 (2008).

    Article  Google Scholar 

  39. E. Scholtzová, L. Kucková, J. Kožišek, H. Palková, and D. Tunega, “Experimental and computational study of thaumasite structure,” Cem. Concr. Res. 59, 66–72 (2014).

    Article  Google Scholar 

  40. I. Shtark, K. Bolmann, and K. Zaifart, “Is ettringite the cause of concrete destruction,” Tsem. Ego primen., No. 2, 13–22 (1998).

  41. V. I. Stepanov, T. N. Matrosova, and A. E. Bykova, “On genesis of thaumasite from different types of deposits and its chemical composition,” Tr. Mineral. Muz. Akad. Nauk SSSR 29, 107–110 (1981).

    Google Scholar 

  42. T. L. Strelyuk, E. F. Chesnokova, and Z. S. Vernoslova, “Om find of thaumasite on the Korshunovsky iron ore deposit (southern Siberian Platform),” Problems of Mineralogy and Geochemistry of Igneous Rocks of East Siberia (Irkutsk, 1976), pp. 24–27 [in Russian].

  43. J. H. P. van Aardt and S. Visser, “Thaumasite formation: a cause of deterioration of Portland cement and related substances in the presence of sulphates,” Cem. Concr. Res. 5 (3), 225–232 (1975).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. V.O. Yapaskurt, the Head of the Laboratory of Analytical Techniques of High Spatial Resolution for conducting microprobe analysis of the thaumasite sample. We are thankful to the scientific editor M.V. Mironenko.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, Y.D., Vigasina, M.F., Mel’chakova, L.V. et al. Thermal and Thermochemical Study of Thaumasite. Geochem. Int. 61, 1273–1282 (2023). https://doi.org/10.1134/S0016702923110046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923110046

Keywords:

Navigation