Log in

Changes in the Geochemistry of Land Waters at Climate Warming and a Decrease in Acid Deposition: Recovery of the Lakes or Their Evolution?

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents results of a long-term (1990–2018) study of changes in the geochemistry of land waters in the Kola region as a consequence of climate warming and a regional- and global-scale decrease in the emission of acid-forming gases. The work is based on materials acquired by studying 75 small lakes in the region every four to five years in the period of time of 1990 through 2018. Reliable trends toward a temperature rise over a 28-year study period were revealed based on the analysis of weather archives. It was found out that the content of anthropogenic sulfates in the water significantly decreased and the acid-neutralizing capacity of waters increased due to the reduction in the anthropogenic sulfur emissions into the atmosphere. An increase in the content of organic matter and nutrients in the water of lakes has been proven, which is reliably associated with an increase in the regional temperatures. A number of lakes in acid-vulnerable regions retain critical values of the acid-neutralizing capacity of waters, which may be associated with both local and transregional transport of polluted air masses. The analysis of the chemical variability the waters in a long-term series of observations demonstrates the evolutionary development of lakes and changes in the biogeochemical cycles as a consequence of the transformation of the watersheds under the influence of a decrease in acid deposition from the atmosphere on the catchment areas and climate warming in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Atlas of the Murmansk Region (Maps), Ed. by A. G. Durov (Moscow, 1971) [in Russian]

    Google Scholar 

  2. J. L. Campbell, L. E. Rustad, E. W. Boyer, S. F. Christopher, C. T. Driscoll, I. J. Fernandez, P. M. Groffman, D. Houle, J. Kiekbusch, A. H. Magill, M. J. Mitchell, and S. V. Ollinger, “Consequences of climate change for biogeochemical cycling in forests of northeastern North America,” Can. J. For. Res. 39, 264–284 (2009).

    Article  Google Scholar 

  3. T. A. Clair, I. F. Dennis, and R. Vet, “Water chemistry and dissolved organic carbon trends in lakes from Canada’s Atlantic Provinces: no recovery from acidification measured after 25 years of lake monitoring,” J. Fish. Aquat. Sci. 68, 663–674 (2011).

    Article  Google Scholar 

  4. J. M. Clark, S. H. Bottrell, C. D. Evans, D. T. Monteith, R. Bartlett, R. Rose, R. J. Chapman, and P. J. Newton, “The importance of the relationship between scale and process in understanding long-term DOC dynamics,” Sci. Total Environ 408, 2768 (2010).

    Article  Google Scholar 

  5. J. R. Corman, B. L. Bertolet, N. J. Casson, S. D. Sebestyen, R. K. Kolka, and E. H. Stanley, “Nitrogen and phosphorus loads to temperate seepage lakes associated with allochthonous dissolved organic carbon loads,” Geophys. Res. Lett. 45, 5481–5490 (2018).

    Article  Google Scholar 

  6. H. A. De Wit, S. Valinia, G. A. Weyhenmeyer, M. N. Futter, P. Kortelainen, K. Austnes, D. O. Hessen, A. Räike, H. Laudon, and J. Vuorenmaa, “Current browning of surface waters will be further promoted by wetter climate,” Environ. Sci. Technol. Lett. 3, 430–5 (2016).

    Article  Google Scholar 

  7. C. T. Driscoll, K. M. Driscoll, K. M. Roy, and M. J. Mitchell, “Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition,” Environ. Sci. Technol. 37, 2036–2042 (2003). https://doi.org/10.1021/es020924h

    Article  Google Scholar 

  8. C. T. Driscoll, K. M. Driscoll, H. Fakhraei, and K. Civerolo, “Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition,” Atmos. Environ. 146, 5–14 (2016).

    Article  Google Scholar 

  9. O. Yu. Drozdova, A. R. Aleshina, V. V. Tikhonov, S. A. Lapitskiy, and O. S. Pokrovsky, “Coagulation of organo-mineral colloids and formation of low molecular weight organic and metal complexes in boreal humic river water under UV-irradiation,” Chemosphere 250, 126216 (2020).

    Article  Google Scholar 

  10. C. D. Evans, D. T. Monteith, B. Reynolds, and J. M. Clark, “Buffering of recovery from acidification by organic acids,” Sci. Total Environ. 404, 316–325 (2008).

    Article  Google Scholar 

  11. H. Fakhraei and C. T. Driscoll, “Proton and aluminum binding properties of organic acids in surface waters of the northeastern U.S,” Environ. Sci. Technol. 49, 2939–2947 (2015).

    Article  Google Scholar 

  12. H. Feuchtmayr, R. Moran, K. Hatton, L. Cannor, T. Yeyes, J. Harley, and D. Arkinson, “Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms,” J. Appl. Ecol. 46, 713–723 (2009).

    Article  Google Scholar 

  13. J. N. Galloway, “Acid deposition: perspectives in time and space,” Water, Air, Soil Pollut. 85, 15–24 (1995).

    Article  Google Scholar 

  14. O. G. Garmo, B. L. Skjelkvåle, H. A. de Wit, L. Colombo, C. Curtis, J. Folster, and A. Hoffmann, “Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008,” Water, Air, Soil Pollut. 225, 1880 (2014).

    Article  Google Scholar 

  15. A. L. Gavin, S. J. Nelson, A. J. Klemmer, I. J. Fernandez, K. E. Strock, and W. H. McDowell, “Acidification and climate linkages to increased dissolved organic carbon in high elevation lakes,” Water Resour. Res. 54, 5187–5877 (2018).

    Article  Google Scholar 

  16. G. V. Gruza and E. Ya. Ran’kova, Observed and Expected Climatic Changes in the Russian Federation: Air Temperature (VNIIGMI-MTSD, Obninsk, 2012) [in Russian].

    Google Scholar 

  17. A. Henriksen, I. Kämäri, M. Posh, and A. Wilander, “Critical loads of acidity: Nordic surface waters,” Ambio 21, 356–363 (1992).

    Google Scholar 

  18. A. Henriksen, B. L. Skjelvåle, J. Mannio, et al., “Northern European Lake Survey, Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales,” Ambio 27, 80–91 (1998).

    Google Scholar 

  19. D. Houle, S. Couture, and C. Gagnon, “Relative role of decreasing precipitation sulfate and climate on recent lake recovery,” Global Biogeochem. Cycles 24, 4029 (2010).

    Article  Google Scholar 

  20. IPCC. Climate Change: Fifth Assessment Report (2014). (ar5) https://www.ipcc-wg1.unibe.ch/ Ar5/ar5.html.

  21. Report: Acidification of Surface Water in Europe and North America: Trends, Biological Recovery and Heavy Metals, ICP-Waters (2007).

  22. Waters Programme Manual. Report105/2010, ICP-Waters, International cooperative Programme on Assessment and Monitoring Effects of Air Pollution on Rivers and Lakes (2010). https://niva.brage.unit.no/niva-xmlui/handle/ 11250/215220?locale-ttribute=en

  23. K. M. Kline, K. N. Eshleman, J. E. Garlitz, and S. H. U’Ren, “Long-term response of surface water acid neutralizing capacity in a central Appalachian (USA) river basin to declining acid deposition,” Atmos. Environ. 146, 195–205 (2016).

    Article  Google Scholar 

  24. S. Kohler, I. Buffam, A. Jonsson, and K. Bishop, “Photochemical and microbial processing of stream and soil water dissolved organic matter in a boreal-forested catchment in northern Sweden,” Aquat. Sci. 64, 269–281 (2002).

    Article  Google Scholar 

  25. V. T. Komov, V. I. Lazareva, and I. K. Stepanova, “Anthropogenic contamination of small lakes of the northern European Russia,” Biol. Vnutr. Vod, No. 3, 5–17 (1997).

    Google Scholar 

  26. K. M. Meingast, E. Kane, A. A. Coble, A. M. Marcarelli, and D. Toczydlowski, “Climate, snowmelt dynamics and atmospheric deposition interact to control dissolved organic carbon export from a northern forest stream over 26 years,” Environ. Res. Lett. 15, 104034 (2020).

    Article  Google Scholar 

  27. J. M. Melillo, T. C. Richmond, and G. W. Yohe, Climate Change Impacts in the United States: the Third National Climate Assessment, U.S. Global Change Research Program (1994)

    Google Scholar 

  28. T. I. Moiseenko, “The fate of metals in Arctic surface waters: Method for defining critical levels Sci. Total. Environ. 236, 19–39 (1999).

    Article  Google Scholar 

  29. T. I. Moiseenko, “Acidification and critical loads in surface waters: Kola, Northern Russia,” Ambio 23, 418–424 (2014).

    Google Scholar 

  30. T. I. Moiseenko and A. Sharov, “Large Russian lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review,” Geosciences 9, 492 (2019).

    Article  Google Scholar 

  31. T. I. Moiseenko, M. I. Dinu, M. M. Bazova, and H. A. de Wit, “Long-term changes in the water chemistry of Arctic lakes as a response to reduction of air pollution: case study in the Kola, Russia,” Water, Air, Soil Pollut. 226, 98 (2015).

    Article  Google Scholar 

  32. T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, Water Acification: Vulnerability and Critical Loads (URSS Lenand, 2017) [in Russian].

    Google Scholar 

  33. T. I. Moiseenko, M. I. Dinu, N. A. Gashkina, V. Jones, V. Y. Khoroshavin, and T. A. Kremleva, “Present status of water chemistry and acidification under nonpoint sources of pollution across European Russia and West Siberia,” Environ. Res. Lett. 13, 105007 (2018).

    Article  Google Scholar 

  34. T. I Moiseenko, N. A. Gashkina, M. I. Dinu, T. A. Kremleva, and V. Yu. Khoroshavin, “Water chemistry of Arctic lakes under airborne contamination of watersheds,” Water 12, 1659 (2020).

    Article  Google Scholar 

  35. D. T. Monteith, J. L. Stoddard, C. D. Evans, Wit H. A. de, M. Forsius, T. Hogasen, A. Wilander, B. L. Skjelkvale, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Vesely, and J. Kopacek, “Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry,” Nature 450, 537–539 (2007).

    Article  Google Scholar 

  36. V. I. Pozhilenko, B. V. Gavrilenko, D. V. Zhirov, and S. V. Zhabin, Geology of Ore Districts of the Murmansk Region (Kol’sk. Nauchn. Ts. RAS, Moscow, 2002) [in Russian].

    Google Scholar 

  37. Report on the Environmental State and Protection in the Murmansk Region in 1990–2018 (2019) [in Russian].

  38. M. Rogora, L. Colombo, A. Marchetto, R. Mosello, and S. Steingruber, “Temporal and spatial patterns in the chemistry of wet deposition in Southern Alps,” Atmos. Environ. 146, 44–54 (2016).

    Article  Google Scholar 

  39. M. D. San Clements, I. J. Fernandez, R. H. Lee, J. A. Roberti, M. B. Adams, G. A. Rue, and D. M. McKnight, “Long-term experimental acidification drives watershed scale shift in dissolved organic matter composition and flux,” Environ. Sci. Technol. 52, 2649–2657 (2018).

    Article  Google Scholar 

  40. B. L. Skjelkvale, J. L. Stoddard, and T. Andersen, “Trends in surface water acidification in Europe and North America (1989–1998),” Water, Air, Soil Pollut. 130, 787–792 (2001).

    Article  Google Scholar 

  41. B. L. Skjelkvale, J. L. Stoddard, D. S. Jeffries, K. Torseth, and T. J. Hogasen, “Regional scale evidence for improvements in surface water chemistry 1990–2001,” Environ. Pollut. 137, 165–176 (2005).

    Article  Google Scholar 

  42. S. Sommaruga-Wӧgrath, K. A. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri, and R. Psenner, “Temperature effects on the acidity of remote alpine lakes,” Nature 387, 64–67 (1997).

    Article  Google Scholar 

  43. Standard Methods for the Examination of Water and Wasterwater (Am. Publ. Health Ass., Washington, 1992).

  44. J. L. Stoddard, D. S. Jeffries, A. Lukewille, T. A. Clair, P. J. Dillon, C. T. Driscoll, and M. Forsius, “Regional trends in aquatic recovery from acidification in North America and Europe,” Nature 401, 575–578 (1999).

    Article  Google Scholar 

  45. J. L. Stoddard, Sickle J. Van, A. T. Herlihy, J. Brahney, S. Paulsen, D. V. Peck, et al., “Continental-scale increase in lake and stream phosphorus: Are oligotrophic systems disappearing in the United States?,” Environ. Sci. Technol. 50, 3409–3415 (2016).

    Article  Google Scholar 

  46. K. E. Strock, S. J. Nelson, J. S. Kahl, J. E. Saros, and W. H. McDowell, “Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern U.S.,” Environ. Sci. Technol. 48, 4681–4689 (2014).

    Article  Google Scholar 

  47. K. E. Strock, N. Theodore, W. G. Gawley, A. C. Ellsworth, and J. E. Saros, “Increasing dissolved organic carbon concentrations in northern boreal lakes: implications for lake water transparency and thermal structure,” J. Geophys. Res. Biogeosci. 122, 1022–35 (2017)

    Article  Google Scholar 

  48. V. I. Vernadsky, Scientific Idea as a Planetary Phenomenon (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  49. C. P Ward and R. M. Cory, “Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils,” Environ. Sci. Technol. 50, 3545–3553 (2016).

    Article  Google Scholar 

  50. S. A. Watmough, C. Eimers, and S. Baker, “Impediments to recovery from acid deposition,” Atmos. Environ. 146, 15–27 (2016).

    Article  Google Scholar 

  51. Weather Archive: Murmansk Region (2019). Reference-Information Site “Weather and Climate”. (http://www. pogodaiklimat.ru/archive.php?id=ru&region=51) [in Russian].

  52. Yearbook on the Contamination State of Cities in Russia for 2018 (GGO Rosgidromet, St. Petersburg, 2019) [in Russian].

Download references

Funding

This study was carried out under government-financed research project 0137-2019-0008 for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, and was supported by Russian Foundation for Basic Research, project no. 18-05-60012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Moiseenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, T.I., Bazova, M.M., Dinu, M.I. et al. Changes in the Geochemistry of Land Waters at Climate Warming and a Decrease in Acid Deposition: Recovery of the Lakes or Their Evolution?. Geochem. Int. 60, 685–701 (2022). https://doi.org/10.1134/S0016702922060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922060039

Keywords:

Navigation