Log in

Coalbed Methane Accumulation Indicated by Geochemical Evidences from Fracture-filling Minerals in Huaibei coalfield, East China

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Fracture-filling minerals in coal-bearing strata are the product of water-rock interactions under specific geological conditions, which reflect the accumulation process and characteristics of CBM enrichment and migration. In this study, vein-bearing sedimentary rock samples from coal-bearing strata in the Huaibei coalfield were selected to reveal the fluid sources and the filling periods of CBM. The carbon source of the vein samples is a mixture of the degraded organic carbon of coal and the dissolution of carbonate minerals in coal measure. Considering the low salinity of the fluid, the infiltration of surface water will also bring some supergenic carbon supplement. Moreover, the high 87Sr/86Sr ratios might also be induced by the infiltration of surface water and the dissolution of radiogenic strontium adsorbed in coal. Based on the temperature, salinity, and Raman spectral analysis, the formation of fluid inclusions is divided into two phases: the first phase corresponded to the generation of large-scale thermogenic gas, while the second phase reflected the event of large-scale secondary biogas formation. The values of δD–CH4 and δ13C–CH4 in the group inclusions showed that no significant isotope fractionation occurred between the methane in the inclusions and that in the coal seam; the methane in the inclusions is predominantly biogas. This study further reveals the mechanism of CBM formation and accumulation process in the Huaibei coalfield, which could benefit the exploration and development of CBM in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Al-Jubori, S. Johnston, C. Boyer, S. W. Lambert, O. A. Bustos, J. C. Pashin, and A. Wray. “Coalbed methane: clean energy for the world,” Oilfield Rev. 21 (2): 4–13 (2009).

    Google Scholar 

  2. J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma, and R. H. Worden, “Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: Implications for paleoenvironment and diagenesis,” Geochemistry 69 (1): 45–60 (2009).

    Article  Google Scholar 

  3. J. W. B. Ayers, “Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River basins,” AAPG Bull. 86, 1853 –1890 (2002).

    Google Scholar 

  4. Y. Bao, C. T. Wei, C. Y. Wang, G. C. Wang, and Q. G. Li, “Geochemical characteristics and generation process of mixed biogenic and thermogenic CBM in Luling coalfield, China” Energy & Fuels 28 (7): 4392–4401 (2014).

    Article  Google Scholar 

  5. Y. Bao, Y. W. Ju, H. P. Huang, J. L. Yun, and C. Guo, “Potential and constraints of biogenic methane generation from coals and mudstones from Huaibei Coalfield, Eastern China,” Energy & Fuels 33 (1), 287–295 (2018).

    Article  Google Scholar 

  6. M. Baron, J. Parnell, D. Mark, and A. Carr, M. Przyjalgowski, and M. Feely, “Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, Clair Field, west of Shetland, UK,” Marine Petrol. Geol. 25, 153–172 (2008).

    Article  Google Scholar 

  7. H. D. Chen, J. Y. Jiang, X. J. Chen, and C. T. Xu, “Differences in coal bed methane occurrence for different regions of igneous erosion in the Haizi coal mine, Huaibei coalfield, China,” J. Nat. Gas Sci. Eng. 21, 732–737 (2014).

    Article  Google Scholar 

  8. R. K. Chen, “Application of Stable Oxygen and Carbon Isotope in the Research of Carbonate Diagenetic Environment,” Acta Sediment. Sinica 13 (4), 11–21 (1994).

    Google Scholar 

  9. I. Cronshaw and R. Q. Grafton, “A tale of two states: Development and regulation of coal bed methane extraction in Queensland and New South Wales, Australia,” Res. Policy 50, 253–263 (2016).

    Article  Google Scholar 

  10. J. X. Dai, X. Shi, and Y. Z. Wei, “Summary of the abiogenic origin theory and the abiogenic gas pools (fields),” Acta Petrol. Sinica 22 (6), 5–10 (2001).

    Google Scholar 

  11. T. Dunkley-Jones, A. Ridgwell, D. J. Lunt, M. A. Maslin, D. N. Schmidt, and P. J. A. Valdez, “Palaeogene perspective on climate sensitivity and methane hydrate instability,” Philos. Trans R. Soc. A. 368, 2395–2415 (2010).

    Article  Google Scholar 

  12. G. Faure, Principles of Isotope Geology, 2nd ed. (New York, Wiley, 1986).

    Google Scholar 

  13. A. J. Fleet, H. Wycherley, and H. Shaw, “Large volumes of carbon dioxide in sedimentary basins. Mineralogical Magazine,” 62, 460–461 (1998).

    Article  Google Scholar 

  14. R. M. Flores, “CBM: from hazard to resource,” Int. J. Coal Geol. 35: 3–261998.

  15. C. D. Frost, B. N. Pearson, K. M. Ogle, E. L. Heffern, and R. M. Lyman, “Sr isotope tracing of aquifer interactions in an area of accelerating coal bed methane production, Powder River Basin, Wyoming,” Geology 30, 923–926 (2002).

    Article  Google Scholar 

  16. S. Y. Fu, P. A. Peng, W. Z. Zhang, D. H. Liu, and J. Z. Liu, “Palaeo_water and gas boundary in the Upper Paleozoic gas reservoir of Ordos Basin reconstructed using vitrinite reflectance kinetics and the homogenization,” Acta Petrolei Sinica 24 (3), 46–51 (2003).

    Google Scholar 

  17. J. Gao, S. He, and J. Z. Yi, “Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance,” Oil Gas Geol. 36 (3), 472–480 (2015).

    Google Scholar 

  18. G. P. Glasby, “Abiogenic origin of hydrocarbons: an historical overview,” Res. Geol. 56 (1), 83–96 (2006).

    Article  Google Scholar 

  19. S. Gong, P. A. Peng, Y. H. Shuai, J. X. Dai, and W. Z. Zhang, “Primary migration and secondary alteration of the Upper Paleozoic gas reservoir in Ordos Basin, China–Application of fluid inclusion gases. Science in China,” Ser. D: Earth Sci. 51 (1), 165–173 (2008).

    Article  Google Scholar 

  20. Q. M. Huang, S. M. Liu, G. Wang, B. Wu, and Y. Z. Zhang, “Coalbed methane reservoir stimulation using guar-based fracturing fluid: a review,” J. Nat. Gas Sci. Eng. 66, 107–125 (2019).

    Article  Google Scholar 

  21. S. J. Huang, H. Shi, M. Zhang, L. C. Shen, J. Liu, and W. H. Wu, “Strontium isotope evolution and global sea-level changes of Carboniferous and Permian marine carbonate, Upper Yangtze Platform,” Acta Sedimentol. Sinica 19 (4), 481–487 (2001).

    Google Scholar 

  22. B. Jiang, Z. H. Qu, G. G. X. Wang, and M. Li, “Effects of structural deformation on formation of CBM reservoirs in Huaibei coalfield, China,” Int. J. Coal Geol. 82 (3), 175–183 (2010).

    Article  Google Scholar 

  23. K. **, Y. P. Cheng, L. Wang, J. Dong, P. K. Guo, F. H. An, and L. M. **g, “The effect of sedimentary redbeds on coalbed methane occurrence in the Xutuan and Zhaoji coal mines, Huaibei coalfield,” China, Int. J. Coal Geol. 137, 111–123 (2015).

    Article  Google Scholar 

  24. Y. W. Ju, Y. Sun, Z. Y. Sa, J. N. Pan, J. L. Wang, Q. L. Hou, Q. G. Li, Z. F. Yan, and J. Liu, “A new approach to estimate fugitive methane emissions from coal mining in China,” Sci. Tot. Environ. 543, 514–523 (2016).

    Article  Google Scholar 

  25. M. L. Keith and J. N. Weber, “Carbon and oxygen isotopic composition of selected limestones and fossils,” Geochim. Cosmochim. Acta 28 (10–11), 1787–1816 (1964).

    Article  Google Scholar 

  26. D. Lemarchand, A. D. Jacobson, D. Cividini, and F. Chabaux, “The major ion, 87Sr/86Sr, and δ11B geochemistry of groundwater in the Wyodak-Anderson coal bed aquifer (Powder River Basin, Wyoming, USA),” Comptes Rend. Geosci. 347 (7–8), 348-357 (2015).

    Article  Google Scholar 

  27. J. Li, S. H. Tang, S. H. Zhang, L. Li, J. G. Wei, Z. D. **, and K. Sun, “Characterization of unconventional reservoirs and continuous accumulations of natural gas in the Carboniferous-Permian strata, mid-eastern Qinshui basin, China,” J. Nat. Gas Sci. Eng. 49, 298–316 (2018).

    Article  Google Scholar 

  28. Q. G. Li, Y. W. Ju, Y. Bao, Z. F. Yan, X. S. Li, and Y. Sun, “Composition, origin and distribution of CBM in the Huaibei Coalfield, China,” Energy Fuels 29 (2): 546–555 (2015b).

    Article  Google Scholar 

  29. Q. G. Li, Y. W. Ju, W. Q. Lu, G. C. Wang, B. Neupane, and Y. Sun, “Water–rock interaction and methanogenesis in formation water in the southeast Huaibei coalfield, China,” Mar. Petrol. Geol. 77, 435–447 (2016).

    Article  Google Scholar 

  30. Q. G. Li, Y. W. Ju, P. Chen, Y. Sun, M. Wang, X. S. Li, an J. Chen, Biomarker study of depositional paleoenvironments and organic matter inputs for Permian coalbearing strata in the Huaibei Coalfield, East China, Energy & Fuels 31 (4), 3567–3577 (2017).

    Article  Google Scholar 

  31. S. Z. Li, B. M. Jahn, S. J. Zhao, L. Dai, X. Y. Li, Y. H. Suo, and Z. Zhou, “Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data,” Earth-Sci. Rev. 166, 270–285 (2017).

    Article  Google Scholar 

  32. W. Li, Z. H. Zhang, L. Zhu, L. G. Han, and Y. K. Yang, “The history analysis of hydrocarbon expulsion from the coal beds in the Carboniferous–Permian in Qinshui Basin, Shanxi,” Acta Sedimentol. Sinica 23 (2), 337–345 (2005).

    Google Scholar 

  33. X. Q. Li, S. B. Feng, J. Li, M. Wang, X. B. Huang, K. D. Wang, and L. X. Kong, “Geochemistry of natural gas accumulation in Sulige large gas field in Ordos Basin,” Acta Petrologica Sinica 28 (3): 836–846 (2012).

    Google Scholar 

  34. Y. Li, D. Z. Tang, H. Xu, D. Elsworth, and Y. Meng, “Geological and hydrological controls on water coproduced with CBM in Liulin, eastern Ordos basin, China,” AAPG Bull. 99 (2): 207–229 (2015a).

    Article  Google Scholar 

  35. Y. Li, J. H. Yang, Z. J. Pan, S. Z. Meng, K. Wang, and X. L. Niu, “Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China,” Acta Geol. Sinica-English Edition 93 (1), 111–129 (2019).

    Article  Google Scholar 

  36. D. H. Liu, X. M. **ao, H. Tian, C. Yang, A. P. Hu, and Z. G. Song, “Identification of natural gas origin using the characteristics of bitumen and fluid inclusions,” Petrol. Explor. Develop. 36 (3), 375–382 (2009).

    Google Scholar 

  37. D. L. Liu, X. R. Sun, Z. S. Li, N. A. Tang, and Y. Tan, “Carbon and oxygen isotope analysis of fluid inclusions in Ordovician carbonate veins of Ordos Basin,”Acta Petrol. Sinica 28 (3), 68–74 (2007).

    Google Scholar 

  38. X. Liu and C. Z. Yang, “Main research methods and applications of mineral fluid inclusions in carbonate rocks,” Exp. Petrol. Geol. 13 (4), 399–407 (1991).

    Google Scholar 

  39. D. M. Liu, Y. B. Yao, D. Z. Tang, S. H. Tang, Y. Chen, and W. H. Huang, “Coal reservoir characteristics and coalbed methane resource assessment in Huainan and Huaibei coalfields, Southern North China,” Int. J. Coal Geol. 79 (3): 97–112 (2009).

    Article  Google Scholar 

  40. Y. Liu, J. C. Zhang, J. Ren, Z. Y. Liu, H. Huang, and X. Tang, “Stable isotope geochemistry of the nitrogen-rich gas from lower Cambrian shale in the Yangtze Gorges area, South China,” Mar. Petrol. Geol. 77, 693–702 (2016).

    Article  Google Scholar 

  41. Z. D. Liu, Y. P. Cheng, J. Dong, J. Y. Jiang, and L. Wang, “Master role conversion between diffusion and seepage on coalbed methane production: implications for adjusting suction pressure on extraction borehole,” Fuel 223, 373–384 (2018).

    Article  Google Scholar 

  42. T. K. Lowenstein, B. A. Schubert, and M. N. Timofeeff, “Microbial communities in fluid inclusions and long term survival in halite,” GSA Today 21 (1): 4–9 (2011).

    Article  Google Scholar 

  43. H. Z. Lu, H. R. Fan, P. Ni, G. X. Ou, K. Shen, and W. H. Zhang, Fluid Inclusions (Science Press: Bei**g, 2004)

    Google Scholar 

  44. V. Lüders, B. Plessen, and R. Primio, “Stable carbon isotopic ratios of CH4–CO2-bearing fluid inclusions in fracture-fill mineralization from the Lower Saxony Basin (Germany)–A tool for tracing gas sources and maturity,” Mar. Petrol. Geol. 30 (1), 174–183 (2012).

    Article  Google Scholar 

  45. T. A. Moore, “CBM: A review,” Int. J. Coal Geol. 101, 36–81 (2012).

    Article  Google Scholar 

  46. F. Y. Mu, W. Z. Zhong, X. L. Zhao, C. B. Chen, and B. Wang, “Strategies for the development of CBM gas industry in China,” Natural Gas Industry 2 (4), 383–389 (2015).

    Article  Google Scholar 

  47. Y. A. Munoz, R. Littke, and M. R. Brix, “Fluid systems and basin evolution of the western Lower Saxony Basin, Germany,” Geofluids 7 (3): 335–355 (2007).

    Article  Google Scholar 

  48. S. E. Ohm and D. A. Karlsen, “Biogenic gas (?) in fluid inclusions from sandstones in contact with oil-mature coals,” AAPG Bull. 91 (5), 715–739 (2007).

    Article  Google Scholar 

  49. G. X. Ou, L. Q. Li, and Y. M. Sun, “Theory and application of the fluid inclusion research on the sedimentary basins,” Bull. Mineral. Petrol. Geochem. 25 (1), 1–11 (2006).

    Google Scholar 

  50. J. N. Pan, T. Sun, Q. L. Hou, Y. X. Cao, and X. W. Deng, “Examination of the formation phases of CBM reservoirs in the Lu’an mining area (China) based on a fluid inclusion analysis and Ro method,” J. Nat. Gas Sci. Eng. 22, 73–82 (2015).

    Article  Google Scholar 

  51. S. X. Sang, Y. Qin, D. Y. Song, and Y. Zeng, “Geochemistry of vein mineral inclusions in coal measures in Southern Shanxi: a reference to the regional thermal-metamorphism of high-rank coal,” J. China Univ. Mining & Technol. 26 (4), 4–7 (1997).

    Google Scholar 

  52. F. Schubert, L. W. Diamond, and T. M. Tóth, “Fluid-inclusion evidence of petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary,” Chem. Geol. 244 (3–4), 357–381 (2007).

    Article  Google Scholar 

  53. L. Y. Shao, “The relationship of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature,” J. China Univ. Mining Technol. 23 (1), 39–45 (1994).

    Google Scholar 

  54. B. H. Shi, Y. Zhang, J. Chen, and L. Zhang, “Characteristics and geological significance of fluid inclusions in Mesozoic reservoirs in Dingbian area, Ordos Basin,” Acta Fetrolei Sinica 35 (6): 1087–1094 (2014).

    Google Scholar 

  55. W. Solano-Acosta, A. Schimmelmann, M. Mastalerz, and I. Arango, “Diagenetic mineralization in Pennsylvanian coals from Indiana, USA: 13C/12C and 18O/16O implications for cleat origin and CBM generation,” Int. J. Coal Geol. 73, 219–236 (2008).

    Article  Google Scholar 

  56. M. Sośnicka, and V. Lüders, “Fluid inclusion evidence for low-temperature thermochemical sulfate reduction (TSR) of dry coal gas in Upper Permian carbonate reservoirs (Zechstein, Ca2) in the North German Basin,” Chem. Geol. 534, 119453 (2020)

    Article  Google Scholar 

  57. A. Su, H. H. Chen, M. Z. Lei, Q. Li, and C. W. Wang, “Paleo-pressure evolution and its origin in the **hu slope belt of the **hu Depression, East China Sea Basin,” Mar. Petrol. Geol. 107, 198–213 (2019).

    Article  Google Scholar 

  58. J. Q. Tan, Y. W. Ju, W. M. Yuan, Q. L. Hou, J. N. Pan, and J. J. Fan, “Thermochronological and structural evolution of the Huaibei coalfield in eastern China: Constrains from zircon fission-track data,” Rad. Meas. 46 (2), 183–189 (2011).

    Article  Google Scholar 

  59. S. Tao, S. D. Chen, and Z. J. Pan, “Current status, challenges, and policy suggestions for coalbed methane industry development in China: A review,” Energy Sci. Eng. 7 (4), 1059–1074 (2019).

    Article  Google Scholar 

  60. S. Tang, D. Z. Tang, H. Xu, S. Tao, S. Li, and Y. Geng, “Geological mechanisms of the accumulation of CBM induced by hydrothermal fluids in the western Guizhou and eastern Yunnan regions,” J. Nat. Gas Sci. Eng. 33, 644–656 (2016).

    Article  Google Scholar 

  61. L. Tong, Y. Luo, F. Zhou, Y. F. Wang, S. Y. Li, L. X. Jia, and T. Yue, “Genetic mechanisms of coalbed methane in typical districts from Huaibei Coalfield, Eastern China,” Geodinam. Acta 30 (1), 241–248 (2018).

    Article  Google Scholar 

  62. G. C. Wang, Y. W. Ju, Y. Bao, Z. F. Yan, X. S. Li, H. L. Bu, and Q. G. Li, “Coal bearing organic shale geological evaluation of Huainan–Huaibei Coalfield, China,” Energy & Fuels 28, 5031–5042 (2014).

    Article  Google Scholar 

  63. G. Z. Wang, S. Z. Li, X. Y. Li, W. Z. Zha, S. J. Zhao, Y. H. Suo, X. G. Liu, I. D. Somerville, Y. M. Liu, and Z. C.Wang, “Destruction effect on Meso-Neoproterozoic oil-gas traps derived from Meso-Cenozoic deformation in the North China Craton,” Precambrian Res. 333, 105427 (2019).

    Article  Google Scholar 

  64. L. J. Wang, “Analysis and study of the composition of fluid inclusions,” Geol. Rev. 44 (5): 496–501 (1998).

    Google Scholar 

  65. M. J. Whiticar, E. Faber, and M. Schoell, “Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation–isotope evidence,” Geochim. Cosmochim. Acta 50 (5): 693–709 (1986).

    Article  Google Scholar 

  66. M. J. Whiticar, “Carbon and hydrogen isotope systematic of microbial formation and oxidation of methane,” Chem. Geol. 161, 291–314 (1999).

    Article  Google Scholar 

  67. Y. D. Wu, Y. W. Ju, Q. L. Hou, S. B. Hu, J. N. Pan, and J. J. Fan, “Comparison of coalbed gas generation between Huaibei-Huainan coalfields and Qinshui coal basin based on the tectono-thermal modeling,” Sci. China Earth Sci. 54 (7): 1069–1077 (2011).

    Article  Google Scholar 

  68. J. Zacharias and J. Pesek, “Fluid inclusion study of carbonate-dominated veinlets from coal seams and rocks of the Central and West Bohemian basins, Czech Republic,” Acta Geodyn. Geomat. 8 (2): 133–143 (2011).

    Google Scholar 

  69. K. Z. Zhang, Q. Q. Liu, K. **, L. Wang, and Q. Y. Tu, “Influence of overlying caprock on coalbed methane migration in the Xutuan Coal Mine, Huaibei Coalfield, China: a conceptional analysis on caprock sealability,” Geofluids, No. 12, 1–17 (2019).

    Google Scholar 

  70. Y. D. Zhao, “Salinity analysis and application of fluid inclusions: a case study of Fushan Sag,” J. Jilin Univ. (Earth Science Edition) 49 (5): 1261–1269 (2019).

    Google Scholar 

  71. Y. Y. Zhao and Y. F. Zheng, “Diagenesis of carbonate sediments,” Acta Petrol. Sinica 27 (2), 501 –519 (2010).

    Google Scholar 

Download references

Funding

This study was sponsored by the National Natural Science Foundation of China (nos. 41772122, 41867050, U1612442), Guizhou Provincial Science and Technology Foundation (nos. [2019]1096, [2020]2Y028), Talent Introduction Project of Guizhou University (no. [2017]73), and Guizhou Province Talent Base Project (no. RCJD2018-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Yiwen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li Qingguang, Yiwen, J., Shangyi, G. et al. Coalbed Methane Accumulation Indicated by Geochemical Evidences from Fracture-filling Minerals in Huaibei coalfield, East China. Geochem. Int. 60, 52–66 (2022). https://doi.org/10.1134/S001670292113005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292113005X

Keywords:

Navigation