Log in

Magnesiothermic reduction of tungsten and molybdenum oxide compounds

  • Chemical Technology
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

A process of producing tungsten and molybdenum powders by magnesium vapor reduction of WO3, MoO3, MgWO4, MgMoO4, CaWO4, CaMoO4, and Ca3WO6 within the temperature range 700–800°C at a residual argon pressure of 5–15 kPa has been studied. The reduction of WO3, MoO3, MgWO4, MgMoO4, and CaMoO4 was accompanied by separation of the products in the reaction mixture, namely, by the removal of most of the resulting magnesium oxide from the reaction zone. Using tungsten and molybdenum compounds containing MgO or CaO as precursors, tungsten and molybdenum powders with a mesoporous structure and a specific surface area of 18–20 m2/g have been produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalamazov, R.U., Tsvetkov, Yu.V., and Kal’kov, A.A., Vysokodispersnye poroshki vol’frama i molibdena (Ultradisperded Tungsten and Molybdenum Powders), Moscow: Metallurgiya, 1988.

    Google Scholar 

  2. Won, C.W., Nersisyan, H.H., Won, H.I., and Lee, J.H., Curr. Opinion Solid State Mater. Sci., 2010, vol. 14, nos. 3/4, pp. 53–68.

    Article  CAS  Google Scholar 

  3. Aydinyan, S.V., Gumruyan, Zh., Manukyan, Kh.V., and Kharatyan, S.L., Mater. Sci. Eng. B, 2010, vol. 3, no. 9, pp. 267–271.

    Article  Google Scholar 

  4. Lee, J.H., Jung, J.C., Borovinskaya, I.P., Vershinnikov, V.I., and Won, C.W., Met. Mater., 2000, vol. 6, no. 3, pp. 73–80.

    Article  CAS  Google Scholar 

  5. Manukyan, K., Davtyan, D., Bossert, J., and Kharatyan, S., Chem. Eng. J., 2011, vol. 168, no. 2, pp. 925–930.

    Article  CAS  Google Scholar 

  6. Zhong, S., Wen, Y., and Zhong, H., Powder Technol., 2014, vol. 253, pp. 128–132.

    Google Scholar 

  7. Zhong, H., Jianghao, L., **angong, D., et al., Int. J. Refract. Met. Hard Mater., 2016, vol. 54, no. 1, pp. 315–321.

    Google Scholar 

  8. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Dokl. Chem., 2014, vol. 457, no. 5, pp. 160–163.

    Article  CAS  Google Scholar 

  9. Orlov, V.M. and Kryzhanov, M.V., Metally, 2015, no. 4, pp. 93–97.

    Google Scholar 

  10. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Dokl. Chem., 2015, vol. 465, no. 2, pp. 257–260.

    Article  CAS  Google Scholar 

  11. Stull, D.R., Vapor Pressure of Pure Substance, Ind. Eng. Chem., 1947, vol. 39, no. 4, pp. 517–550.

    Article  CAS  Google Scholar 

  12. Kazenas, E.K., Termodinamika ispareniya dvoinykh oksidov (Thermodynamics of Evaporation of Double Oxides), Moscow: Nauka, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Orlov.

Additional information

Original Russian Text © V.M. Orlov, V.N. Kolosov, 2016, published in Doklady Akademii Nauk, 2016, Vol. 468, No. 3, pp. 288–292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Kolosov, V.N. Magnesiothermic reduction of tungsten and molybdenum oxide compounds. Dokl Chem 468, 162–166 (2016). https://doi.org/10.1134/S0012500816050062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500816050062

Navigation