Log in

Optimization of the Acidic–Alkaline Composition of the Incubation Medium for Long-Term and Reversible Cryopreservation of Brain Slices of Nonhibernating Animals

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It was found that the activity of the NMDA receptors (bursts of action potentials) was blocked after long-term cryopreservation of brain slices at –10°С. To reactivate the NMDA receptors after cryopreservation/thawing, alterations in extracellular pH (pHo) of the incubation medium were studied. It was found that in the pHo range of 7.2–7.4 a stepwise acidification of the incubation medium down to pHo 6.5 ± 0.2 occurred. As a result, the NMDA receptor current amplitude decreased to 33%. The use of a hybrid buffer system (carbonate, phosphate, and Tris buffer, pHo 7.7) allowed the reactivation of NMDA receptors. This change in pHo was accompanied by an increase in the NMDA amplitude to 84% compared to the initial amplitude (before cryostorage). Thus, the use of the hybrid buffer system and an increase in the pHo level to 7.7 were the best conditions for reactivation of NMDA receptors during thawing after prolonged cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Ichikawa, R.X. Yamada, and R. Muramatsu, J. Pharmacol. Sci. 104, 387 (2007).

    Article  Google Scholar 

  2. N. A. Ivlicheva, Extended Abstract of Candidate’s Dissertation in Biology (Pushchino, 2013).

  3. N. A. Ivlicheva, E. V. Dmitrieva, M. A. Kostenko, and E. N. Gakhova, Biophysics (Moscow) 49 (4), 654 (2004).

    Google Scholar 

  4. N. A. Ivlicheva, I. A. Chistopolskiy, L. I. Kramarova, and E. N. Gakhova, Biochemistry (Moscow), Series A: Membr. Cell Biol. 8 (4), 324 (2014).

    Google Scholar 

  5. E. E. Fesenko, Jr., E. L. Gagarinsky, A. S. Averin, et al., Biophysics (Moscow) 65 (4), 666 (2020).

    Article  Google Scholar 

  6. C. B. Morris, Methods Mol. Biol. 368, 227 (2007).

    Article  Google Scholar 

  7. S. J. Paynter, Brain Res. Bull. 75, 1 (2008).

    Article  Google Scholar 

  8. X.-H. Ma, Y. Shi, and Y. Hou, Cryobiology. 60, 184 (2010).

    Article  Google Scholar 

  9. A. A. Mokrushin, CryoLetters 36 (6), 367 (2015).

    Google Scholar 

  10. A. A. Mokrushin, L. I. Pavlinova, and S. E. Borovikov, J. Therm. Biol. 44, 5 (2014).

    Article  Google Scholar 

  11. A. A. Mokrushin, Bull. Exp. Biol. Med. 161 (1), 28 (2016).

    Article  Google Scholar 

  12. A. A. Mokrushin and S. E. Borovikov, Mol. Med. 15 (2), 14 (2017).

    Google Scholar 

  13. A. A. Mokrushin, Biol. Bull. 247 (1), 71 (2020).

    Article  Google Scholar 

  14. E. D. Kanter and L. B. Haberly, Brain Res. 525, 175 (1990).

    Article  Google Scholar 

  15. A. A. Mokrushin, Doctoral Dissertation in Biology (St. Petersburg, 1997).

  16. T. V. P. Bliss and G. L. Collingridge, Nature 361, 31 (1993).

    Article  ADS  Google Scholar 

  17. T. P. Obrenovitch and J. Urenjak, Progr. Neurobiol. 51, 39 (1997).

    Article  Google Scholar 

  18. S. F. Traynelis and S. D. Cull-Candy, Nature 345 (6273), 347 (1990).

    Article  ADS  Google Scholar 

  19. J. W. McDonald, T. Bhattacharyya, and S. L. Sensi, J. Neurosci. 18 (16), 6290 (1998).

    Article  Google Scholar 

  20. Y. Buskila, P. Breen, and J. Tapson, Sci. Rep. 4, 5309 (2014).

    Article  Google Scholar 

  21. V. A. Ruffin, A. I. Salameh, and W. F. Boron, Front. Physiol. 5 (43), 1 (2014).

    Article  Google Scholar 

  22. F. Pischedda, C. Montani, and J. Obergasteiger, Front. Cell. Neurosci. 12, 81 (2018).

    Article  Google Scholar 

  23. U. Bonnet, D. Bingmann, and E. J. Speckmann, Brain Res. 1710, 146 (2019).

    Article  Google Scholar 

  24. M. I. Mityushov, N. A. Enelyanov, A. A. Mokrushin, et al., Surviving Brain Slice as an Object of Neurophysiological and Neurochemical Research (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  25. W. H. Hoffman and L. J. Haberly, Neurosci. 9 (1), 206 (1989).

  26. M. W. Jung, J. Larson, and G. Lynch, Exp. Brain Res. 82 (5), 451 (1990).

    Article  Google Scholar 

  27. J. L. Lepe-Zuniga, J. S. Zigler, and I. Gery, J. Immunol. Methods 103 (1), 145 (1987).

    Article  Google Scholar 

  28. A. Penna, D. S. Wang, and J. Yu, J. Neurosci. 34 (32), 10624 (2014).

    Article  Google Scholar 

  29. A. K. Chauhan and N. S. Magoski, J. Neurosci. 39 (50) 9900 (2019).

    Article  Google Scholar 

  30. A. A. El-Harakany, F. M. Abdel Halima, and A. O. Barakat, J. Electroanal. Chem. 162 (1–2), 285 (1984).

  31. C. A. Vega, R. A. Butler, and B. Perez, J. Chem. Eng.Data 30, 376 (1985).

    Article  Google Scholar 

  32. B. S. Markofsky and B. Sheldon, Nitro Compounds, Aliphatic, in Ullmann`s Encyclopedia of Industrial Chemistry (New York, 2000).

  33. Z. Ghalanbor, N. Ghaemi, and S. A. Marashi, Prot. Peptide Lett. 15 (2), 212 (2008).

    Article  Google Scholar 

  34. D. Rohanova, D. Horkavcova, and L. Paidere, J. Biomed. Mater. Res. B. Appl. Biomater. 106 (1), 143 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses his gratitude to G.P. Smirnova for her help in conducting the experiments and to S.Ye. Borovikov for his technical assistance in the installation and maintenance of the electrophysiological setup.

Funding

The work was supported by Program of Fundamental Research for state academies for 2013–2020 (GP-14, section 65.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mokrushin.

Ethics declarations

Conflict of interest. The author declares no conflicts of interests

Statement on the welfare of animals. All applied international, national, and institutional principals of animal care and use were met during the experiments.

Additional information

Translated by A. Deryabina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushin, A.A. Optimization of the Acidic–Alkaline Composition of the Incubation Medium for Long-Term and Reversible Cryopreservation of Brain Slices of Nonhibernating Animals. BIOPHYSICS 66, 812–820 (2021). https://doi.org/10.1134/S0006350921050134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921050134

Keywords:

Navigation