Log in

Identification and biochemical characterization of a new antibacterial and antifungal peptide derived from the insect Sphodromantis viridis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Antimicrobial peptides are members of the immune system that protect the host from infection. In this study, a potent and structurally novel antimicrobial peptide was isolated and characterized from praying mantis Sphodromantis viridis. This 14-amino acid peptide was purified by RP-HPLC. Tandem mass spectrometry was used for sequencing this peptide, and the results showed that the peptide belongs to the Mastoparan family. The peptide was named Mastoparan-S. Mastoparan-S demonstrated that it has antimicrobial activities against a broad spectrum of microorganisms (Gram-positive and Gram-negative bacteria and fungi), and it was found to be more potent than common antibiotics such as kanamycin. Mastoparan-S showed higher antimicrobial activity against Gram-negative bacteria compared to Gram-positive ones and fungi. The minimum inhibitory concentration (MIC) values of Mastoparan-S are 15.1–28.3 μg/ml for bacterial and 19.3–24.6 μg/ml for fungal pathogens. In addition, this newly described peptide showed low hemolytic activity against human red blood cells. The in vitro cytotoxicity of Mastoparan-S was also evaluated on monolayer of normal human cells (HeLa) by MTT assay, and the results illustrated that Mastoparan-S had significant cytotoxicity at concentrations higher than 40 μg/ml and had no any cytotoxicity at the MIC (−30 μg/ml). The findings of the present study reveal that this newly described peptide can be introduced as an appropriate candidate for treatment of topical infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulet, P., Hetru, C., Dimarcq, J.-L., and Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function, Dev. Comp. Immunol., 23, 329–344.

    Article  CAS  PubMed  Google Scholar 

  2. Irving, P., Troxler, L., and Hetru, C. (2004) Is innate enough? The innate immune response in Drosophila, C. R. Biologies, 327, 557–570.

    Article  CAS  PubMed  Google Scholar 

  3. Tassanakajon, A., Somboonwiwat, K., and Amparyup, P. (2015) Sequence diversity and evolution of antimicrobial peptides in invertebrates, Dev. Comp. Immunol., 48, 324–341.

    Article  CAS  PubMed  Google Scholar 

  4. Tzou, P., De Gregorio, E., and Lemaitre, B. (2002) How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions, Curr. Opin. Microbiol., 5, 102–110.

    Article  CAS  PubMed  Google Scholar 

  5. Yang, J., Furukawa, S., Sagisaka, A., Ishibashi, J., Taniai, K., Shono, T., and Yamakawa, M. (1999) cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm Bombyx mori, Comp. Biochem. Physiol. B, 122, 409–414.

    Article  CAS  PubMed  Google Scholar 

  6. Padhi, A., Sengupta, M., Sengupta, S., Roehm, K. H., and Sonawane, A. (2014) Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects, Tuberculosis, 94, 363–373.

    Article  CAS  PubMed  Google Scholar 

  7. Pei, Z., Sun, X., Tang, Y., Zhang, D., Gao, Y., and Ma, H. (2014) Cloning, expression, and purification of a new antimicrobial peptide gene from Musca domestica larva, Gene, 549, 41–45.

    Article  CAS  PubMed  Google Scholar 

  8. Che, Q., Zhou, Y., Yang, H., Li, J., Xu, X., and Lai, R. (2008) A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami, Peptides, 29, 529–535.

    Article  CAS  PubMed  Google Scholar 

  9. Rollins-Smith, L. A. (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines, Biochim. Biophys. Acta (Biomembranes), 1788, 1593–1599.

    Article  CAS  Google Scholar 

  10. Chen, W., Yang, B., Zhou, H., Sun, L., Dou, J., Qian, H., Huang, W., Mei, Y., and Han, J. (2011) Structure-activity relationships of a snake cathelicidin-related peptide BF-15, Peptides, 32, 2497–2503.

    Article  CAS  PubMed  Google Scholar 

  11. McQuade, R., Roxas, B., Viswanathan, V. K., and Vedantam, G. (2012) Clostridium difficile clinical isolates exhibit variable susceptibility and proteome alterations upon exposure to mammalian cationic antimicrobial peptides, Anaerobe, 18, 614–620.

    Article  CAS  PubMed  Google Scholar 

  12. Nan, Y. H., Lee, S. H., Kim, H. J., and Shin, S. Y. (2010) Mammalian cell toxicity and candidacidal mechanism of Arg- or Lys-containing Trp-rich model antimicrobial peptides and their d-enantiomeric peptides, Peptides, 31, 1826–1831.

    Article  CAS  Google Scholar 

  13. Hetru, C. (1994) Antimicrobial Peptides (Boman, H., Marsh, J., and Goode, J. A., eds.) John Wiley & Sons, N. Y.

  14. Brown, M. J. F. (2010) Parasites and insects: aspects of social behavior, in Encyclopedia of Animal Behavior (Breed, M. D., and Moore, J., eds.) Academic Press, Oxford, pp. 632–635.

    Chapter  Google Scholar 

  15. Erler, S., Lhomme, P., Rasmont, P., and Lattorff, H. M. G. (2014) Rapid evolution of antimicrobial peptide genes in an insect host-social parasite system, Infect. Genet. Evol., 23, 129–137.

    Article  CAS  PubMed  Google Scholar 

  16. Chesnokova, L. S., Slepenkov, S. V., and Witt, S. N. (2004) The insect antimicrobial peptide, l-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK, FEBS Lett., 565, 65–69.

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y., **ang, Q., Zhang, Q., Huang, Y., and Su, Z. (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application, Peptides, 37, 207–215.

    Article  CAS  PubMed  Google Scholar 

  18. Dassanayake, R. S., Silva Gunawardene, Y. I. N., and Tobe, S. S. (2007) Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized α/β motifs, Peptides, 28, 62–75.

    Article  CAS  PubMed  Google Scholar 

  19. Ahn, H.-S., Cho, W., Kang, S.-H., Ko, S.-S., Park, M.-S., Cho, H., and Lee, K. H. (2006) Design and synthesis of novel antimicrobial peptides on the basis of α-helical domain of tenecin 1, an insect defensin protein, and structure-activity relationship study, Peptides, 27, 640–648.

    Article  CAS  PubMed  Google Scholar 

  20. Mak, P., Zdybicka-Barabas, A., and Cytrynska, M. (2010) A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi, Dev. Comp. Immunol., 34, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  21. Lehrer, R. I., and Ganz, T. (1999) Antimicrobial peptides in mammalian and insect host defence, Curr. Opin. Immunol., 11, 23–27.

    Article  CAS  PubMed  Google Scholar 

  22. Wipfler, B., Wieland, F., DeCarlo, F., and Hornschemeyer, T. (2012) Cephalic morphology of Hymenopus coronatus (Insecta: Mantodea) and its phylogenetic implications, Arthropod Struct. Dev., 41, 87–100.

    Article  CAS  Google Scholar 

  23. Hurd, L. E. (2009) Chap. 157. Mantodea: (Praying Mantids), in Encyclopedia of Insects (Resh, V. H., and Carde, R. T., eds.) 2nd Edn., Academic Press, San Diego, pp. 597–599.

    Chapter  Google Scholar 

  24. Matsuda, R. (1976) 27. The Mantodea, in Morphology and Evolution of the Insect Abdomen (Matsuda, R., ed.) Pergamon, pp. 187–191.

    Chapter  Google Scholar 

  25. Carle, T., Toh, Y., Yamawaki, Y., Watanabe, H., and Yokohari, F. (2014) The antennal sensilla of the praying mantis Tenodera aridifolia: a new flagellar partition based on the antennal macro-, micro- and ultrastructures, Arthropod Struct. Dev., 43, 103–116.

    Article  PubMed  Google Scholar 

  26. Popkiewicz, B., and Prete, F. R. (2013) Macroscopic characteristics of the praying mantis electroretinogram, J. Insect Physiol., 59, 812–823.

    Article  CAS  PubMed  Google Scholar 

  27. Koehler, R., and Predel, R. (2010) CAPA-peptides of praying mantids (Mantodea), Peptides, 31, 377–383.

    Article  CAS  PubMed  Google Scholar 

  28. Memarpoor-Yazdi, M., Zare-Zardini, H., and Asoodeh, A. (2013) A novel antimicrobial peptide derived from the insect Paederus dermatitis, Int. J. Pept. Res. Ther., 19, 99–108.

    Article  CAS  Google Scholar 

  29. Zardini, H. Z., Amiri, A., Shanbedi, M., Maghrebi, M., and Baniadam, M. (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method, Colloids Surf. B Biointerfaces, 92, 196–202.

    Article  CAS  PubMed  Google Scholar 

  30. Lupu, A. R., and Popescu, T. (2013) The noncellular reduction of MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assays, Toxicol. in vitro, 27, 1445–1450.

    Article  CAS  PubMed  Google Scholar 

  31. Simmaco, M., Mignogna, G., and Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers, 47, 435–450.

    Article  CAS  PubMed  Google Scholar 

  32. McGillivary, G., Ray, W. C., Bevins, C. L., Munson, R. S., Jr., and Bakaletz, L. O. (2007) A member of the cathelicidin family of antimicrobial peptides is produced in the upper airway of the chinchilla and its mRNA expression is altered by common viral and bacterial co-pathogens of otitis media, Mol. Immunol., 44, 2446–2458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Boman, H. G. (1991) Antibacterial peptides: key components needed in immunity, Cell, 65, 205–207.

    Article  CAS  PubMed  Google Scholar 

  34. Saido-Sakanaka, H., Ishibashi, J., Momotani, E., Amano, F., and Yamakawa, M. (2004) In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin, Peptides, 25, 19–27.

    Article  CAS  PubMed  Google Scholar 

  35. Ho, C. L., and Hwang, L. L. (1991) Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis, Biochem. J., 274, 453–450.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Nakajima, T., Yasuhara, T., Uzu, S., Wakamatsu, K., Miyazawa, T., Fukuda, K., and Tsukamoto, Y. (1985) Wasp venom peptides; wasp kinins, new cytotrophic peptide families and their physicochemical properties, Peptides, 6, 425–430.

    Article  CAS  Google Scholar 

  37. Ohara-Imaizumi, M., Nakamichi, Y., Ozawa, S., Katsuta, H., Ishida, H., and Nagamatsu, S. (2001) Mastoparan stimulates GABA release from MIN6 cells: relationship between SNARE proteins and mastoparan action, Biochem. Biophys. Res. Commun., 289, 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, T.-M., Chou, T.-C., Ding, Y.-A., and Li, M.-L. (1999) Stimulation of TNF-[agr], IL-1[bgr] and nitrite release from mouse cultured spleen cells and lavaged peritoneal cells by mastoparan-M, Immunol. Cell. Biol., 77, 476–482.

    Article  CAS  Google Scholar 

  39. Amin, R. H., Chen, H. Q., Veluthakal, R., Silver, R. B., Li, J., Li, G., and Kowluru, A. (2003) Mastoparan-induced insulin secretion from insulin-secreting βTC3 and INS-1 cells: evidence for its regulation by Rho subfamily of G proteins, Endocrinology, 144, 4508–4518.

    Article  CAS  Google Scholar 

  40. Straub, S. G., James, R. F., Dunne, M. J., and Sharp, G. W. (1998) Glucose augmentation of mastoparan-stimulated insulin secretion in rat and human pancreatic islets, Diabetes, 47, 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, M. J., Lin, W.-Y., Lu, K.-H., and Tu, W.-C. (2011) Evaluating antioxidative activities of amino acid substitutions on mastoparan-B, Peptides, 32, 2037–2043.

    Article  CAS  PubMed  Google Scholar 

  42. Mendes, M. A., de Souza, B. M., and Palma, M. S. (2005) Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure), Toxicon, 45, 101–106.

    Article  CAS  PubMed  Google Scholar 

  43. Ho, C. L., and Hwang, L. L. (1991) Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis, Biochem. J., 274, 453–456.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Lee, S. Y., Park, N. G., and Choi, M.-U. (1998) Effects of mastoparan B and its analogs on the phospholipase D activity in L1210 cells, FEBS Lett., 432, 50–54.

    Article  CAS  PubMed  Google Scholar 

  45. Russell, A. L., Kennedy, A. M., Spuches, A. M., Venugopal, D., Bhonsle, J. B., and Hicks, R. P. (2010) Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity, Chem. Phys. Lipids, 163, 488–497.

    Article  CAS  PubMed  Google Scholar 

  46. Sample, C. J., Hudak, K. E., Barefoot, B. E., Koci, M. D., Wanyonyi, M. S., Abraham, S., Staats, H. F., and Ramsburg, E. A. (2013) A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses, Peptides, 48, 96–105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Leal Denis, M. F., Incicco, J. J., Espelt, M. V., Verstraeten, S. V., Pignataro, O. P., Lazarowski, E. R., and Schwarzbaum, P. J. (2013) Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes, Biochim. Biophys. Acta (General Subjects), 1830, 4692–4707.

    Article  CAS  Google Scholar 

  48. Zhang, P., Ray, R., Singh, B. R., and Ray, P. (2013) Mastoparan-7 rescues botulinum toxin-A poisoned neurons in a mouse spinal cord cell culture model, Toxicon, 76, 37–43.

    Article  CAS  PubMed  Google Scholar 

  49. Walsh, E. G., Maher, S., Devocelle, M., O’Brien, P. J., Baird, A. W., and Brayden, D. J. (2011) High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs, Peptides, 32, 1764–1773.

    Article  CAS  PubMed  Google Scholar 

  50. Koyama, Y., Motobu, M., Hikosaka, K., Yamada, M., Nakamura, K., Saido-Sakanaka, H., Asaoka, A., Yamakawa, M., Isobe, T., Shimura, K., Kong, C. B., Hayashidani, H., Nakai, Y., and Hirota, Y. (2006) Cytotoxicity and antigenicity of antimicrobial synthesized peptides derived from the beetle Allomyrina dichotoma defensin in mice, Int. Immunopharmacol., 6, 748–753.

    Google Scholar 

  51. Maher, S., and McClean, S. (2006) Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro, Biochem. Pharmacol., 71, 1289–1298.

    Article  CAS  Google Scholar 

  52. Dawson, R. M., and Liu, C.-Q. (2011) Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity, Int. J. Antimicrob. Agents, 37, 432–437.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahtab Ordooei.

Additional information

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 4, pp. 508–516.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-255, February 15, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare-Zardini, H., Taheri-Kafrani, A., Ordooei, M. et al. Identification and biochemical characterization of a new antibacterial and antifungal peptide derived from the insect Sphodromantis viridis . Biochemistry Moscow 80, 433–440 (2015). https://doi.org/10.1134/S0006297915040069

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915040069

Key words

Navigation