Log in

Hydrological Structure and Water Dynamics in the Powell Basin in January–February 2022

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract—In January–February 2022, a CTD/LADCP section with hydrochemical observations was made across the Powell Basin in the Weddell Sea on an Antarctic expedition of the R/V Akademik Mstislav Keldysh. The section extended from the Antarctic Peninsula to the South Orkney Islands; thus, it crossed the Weddell Gyre in its northwestern part. As a result, new data were acquired on the hydrological and hydrochemical structures and water dynamics in this region. This study presents new results on analysis of data related to the structure of the Weddell Gyre, formation of Antarctic Bottom Water, and variability of hydrophysical and hydrochemical characteristics of water in the Powell Basin. Only two of the three currents were identified in the structure of the Weddell Gyre: the Antarctic Coastal Current and Antarctic Slope Front,. The velocities of these currents were about 10–15 cm/s. The structure of waters was typical of the Weddell Sea, but a change in the temperature maximum was recorded in the Warm Deep Water layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. N. V. Arzhanova, “Hydrochemical indicators of frontal zones in the South Atlantic,” Izd. VNIRO 2, 12–20 (1990).

    Google Scholar 

  2. K. V. Artamonova, I. A. Gangnus, V. V. Maslennikov, and N. I. Torgunova, “Hydrochemical research in Antarctic waters during the 59th Russian Antarctic Expedition,” Oceanology 55 (5), 785–787 (2015).

    Article  Google Scholar 

  3. K. V. Batrak (Artamonova), “Hydrochemical characteristic of different modifications of Antarctic waters,” Oceanology 48 (3), 349–356 (2008).

    Article  Google Scholar 

  4. V. V. Klepikov, “Hydrology of the Weddell Sea,” Tr. Sov. Antarkt. Eksped. 17, 45–93 (1963).

    Google Scholar 

  5. E. G. Morozov, V. A. Spiridonov, T. N. Molodtsova, et al., “Investigations of the ecosystem in the Atlantic sector of Antarctica (cruise 79 of the R/V Akademik Mstislav Keldysh),” Oceanology 60 (5), 721–723 (2020). https://doi.org/10.1134/S0001437020050161

    Article  Google Scholar 

  6. E. G. Morozov, M. V. Flint, A. M. Orlov, et al., “Oceanographic and ecosystem studies in the Atlantic sector of Antarctica (cruise 87 of the research vessel Akademik Mstislav Keldysh),” Oceanology 62 (5), 721–723 (2022). https://doi.org/10.1134/S0001437022050150

    Article  Google Scholar 

  7. E. G. Morozov, D. I. Frey, and R. Yu. Tarakanov, “Antarctic bottom water flow through the eastern part of the Philip Passage in the Weddell Sea,” Oceanology 60 (5), 589–592 (2020).

    Article  Google Scholar 

  8. Modern Methods of Hydrochemical Research of the Ocean, Ed. by O. K. Bordovskii and V. N. Ivanenkov (IOAN SSSR, Moscow), 1992.

    Google Scholar 

  9. V. A. Spiridonov, A. K. Zalota, V. A. Yakovenko, and K. M. Gorbatenko, “Population composition and transport of juvenile Antarctic krill in the Powell Basin (northwest Weddell Sea) in January 2020,” Tr. VNIRO 181, 33–51 (2020).

    Article  Google Scholar 

  10. T. P. Boyer, O. K. Baranova, C. Coleman, et al., World Ocean Database 2018, Ed. by A. V. Mishonov, NOAA Atlas NESDIS 87 (2018).

  11. E. C. Carmack and T. D. Foster, “On the flow of water out of the Weddell Sea,” Deep-Sea Res. 22, 711–724 (1975).

    Google Scholar 

  12. J. H. Carpenter, “The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method,” Limnol. Oceanogr. 10, 141–143 (1965).

    Article  Google Scholar 

  13. G. E. R. Deacon, “The Weddell gyre,” Deep Sea Res. I 26 (9), 981–995 (1979).

    Article  Google Scholar 

  14. G. D. Egbert and S. Y. Erofeeva, “Efficient inverse modeling of barotropic ocean tides,” J. Atmos. Ocean. Technol. 19 (2), 183–204 (2002).

    Article  Google Scholar 

  15. A. A. Fedotova and S. V. Stepanova, “Water mass transformation in the Powell Basin,” in Antarctic Peninsula Region of the Southern Ocean, Advances in Polar Ecology, Ed. by E. G. Morozov (Springer, Cham, 2021).https://doi.org/10.1007/978-3-030-78927-5_11

    Book  Google Scholar 

  16. D. I. Frey, V. A. Krechik, E. G. Morozov, et al., “Water exchange between deep basins of the Bransfield Strait,” Water 14, 3193 (2022). https://doi.org/10.3390/w14203193

    Article  Google Scholar 

  17. A. E. Gill, “Circulation and bottom water formation in the Weddell Sea,” Deep-Sea Res. 20, 111–140 (1973).

    Google Scholar 

  18. A. L. Gordon, M. Visbeck, and B. Huber, “Export of Weddell Sea deep and bottom water,” J. Geophys. Res. 106 (C5), 9005–9018 (2001).

    Article  Google Scholar 

  19. K. J. Heywood, A. C. N. Garabato, D. P. Stevens, and R. D. Muench, “On the Fate of the Antarctic Slope Front and the origin of the Weddell Front,” J. Geophys. Res. 109, C06021 (2004). https://doi.org/10.1029/2003JC002053

    Article  Google Scholar 

  20. A. Izhitskiy, N. Romanova, O. Vorobieva, and D. Frey, “Impact of ice melting on oceanographic and hydrobiological characteristics of surface waters in the Powell Basin, Weddell Sea, in January–February 2020,” Oceanology 62, 439–446 (2022).

    Article  Google Scholar 

  21. O. Klatt, E. Fahrbach, M. Hoppema, and G. Rohardt, “The transport of the Weddell Gyre across the Prime Meridian,” Deep-Sea Res. II 52 (3–4), 513–528 (2005).

    Article  Google Scholar 

  22. A. J. S. Meijers, M. P. Meredith, E. P. Abrahamsen, et al., “Wind driven export of Weddell Sea slope water,” J. Geophys. Res. Oceans 121, 7530–7546 (2016). https://doi.org/10.1002/2016JC011757

    Article  Google Scholar 

  23. E. G. Morozov, D. I. Frey, V. A. Krechik, et al., “Water masses, currents, and phytoplankton in the Bransfield Strait in January 2020,” in Antarctic Peninsula Region of the Southern Ocean, Advances in Polar Ecology (Springer, Cham, 2021), Vol. 6, pp. 55–64. https://doi.org/10.1007/978-3-030-78927-5_4

    Book  Google Scholar 

  24. E. G. Morozov, D. I. Frey, O. A. Zuev, et al., “Hydraulically controlled bottom flow in the Orkney Passage,” Water MDPI 14 (19), 3088 (2022). https://doi.org/10.3390/w14193088

    Article  Google Scholar 

  25. A. H. Orsi, W. D. Nowlin, and T. Whitworth III, “On the circulation and stratification of the Weddell Gyre,” Deep-Sea Res. I 40, 169–203 (1993).

    Article  Google Scholar 

  26. A. H. Orsi, W. M. Smethie, and J. L. Bullister, “On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements,” J. Geophys. Res. 107 (C8), 3122 (2002). https://doi.org/10.1029/2001JC000976

    Article  Google Scholar 

  27. L. Padman, S. Y. Erofeeva, and H. A. Fricker, “Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves,” Geophys. Res. Lett. 35, L22504 (2008). https://doi.org/10.1029/2008GL035592

    Article  Google Scholar 

  28. R. Schlitzer, “Data analysis and visualization with ocean data view,” CMOS Bulletin SCMO 43 (1), 9–13 (2015).

    Google Scholar 

  29. M. Schröder, H. H. Hellmer, and J. M. Absy, “On the near-bottom variability in the northwestern Weddell Sea,” Deep-Sea Res. II 49, 4767–4790 (2002).

    Article  Google Scholar 

  30. M. Schodlok, H. Hellmer, and A. Beckmann, “On the transport, variability and origin of dense water masses crossing the South Scotia Ridge,” Deep-Sea Res. II 49, 4807–4825 (2002). https://doi.org/10.1016/S0967-0645(02)00160-1

    Article  Google Scholar 

  31. S. V. Stepanova, A. A. Polukhin, G. V. Borisenko, et al., “Hydrochemical structure of waters in the Northern Weddell Sea in Austral Summer 2020,” in Antarctic Peninsula Region of the Southern Ocean, Advances in Polar Ecology, Ed. by E. G. Morozov (Springer, Cham, 2021), Vol. 6, pp. 159–174. .https://doi.org/10.1007/978-3-030-78927-5_11

    Book  Google Scholar 

  32. F. Thompson and K. Heywood, “Frontal structure and transport in the northwestern Weddell Sea,” Deep-Sea Res. 55 Part I, 1229–1251 (2008).

    Article  Google Scholar 

  33. Q. Wang, S. Danilov, E. Fahrbach, et al., “On the impact of wind forcing on the seasonal variability of Weddell Sea Bottom Water transport,” Geophys. Res. Lett. 39, L06603 (2012). https://doi.org/10.1029/2012GL051198

    Article  Google Scholar 

  34. M. K. Youngs, A. F. Thompson, M. M. Flexas, and K. G. Heywood, “Weddell Sea export pathways from surface drifters,” J. Phys. Oceanogr. 45 (4), 1068–1085 (2015). https://doi.org/10.1175/JPO-D-14-0103.1

    Article  Google Scholar 

Download references

Funding

This study was supported by state task FMWE-2021-0002 (field data collection and processing) and the Russian Science Foundation, grant no. 21-77-20004 (analysis of field data and databases and interpretation of data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Morozov.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhametianov, R.Z., Seliverstova, A.M., Morozov, E.G. et al. Hydrological Structure and Water Dynamics in the Powell Basin in January–February 2022. Oceanology 63, 472–485 (2023). https://doi.org/10.1134/S0001437023040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023040136

Keywords:

Navigation