Log in

Role of Zooplankton in the Vertical Mass Flux in the Kara and Laptev Seas in Fall

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

The role of zooplankton in the vertical mass flux in the Kara and Laptev seas was studied during cruise 63 of the R/V Akademik Mstislav Keldysh in August–October 2015. Mass fluxes were estimated using sediment trap samples. The maximum values of the total vertical flux (19600 mg m−2 day−1) and particulate organic carbon (POC) flux (464 mg C m−2 day−1) were measured close to the Lena River Delta in the Laptev Sea. In the Kara Sea, the total flux (80–2700 mg m−2 day−1) and the POC flux (17–130 mg C m−2 day−1) were substantially higher than the estimates published earlier. The fecal pellet flux varied from 2 to 92 mg C m−2 day−1 and made up 4–190% of the total organic carbon flux. The mineral composition of fecal pellets largely mirrored that of suspended particulate matter. Clay minerals in the fecal pellets were more abundant than in particulate matter in the areas with noticeable freshwater impact. The flux of zooplankton carcasses varied from 0.1 to 66.4 mg C m−2 day−1 and made up 0.2–72% of total POC flux. The results are discussed in relation to the abundance and composition of zooplankton, the concentration and composition of suspended particulate matter, hydrophysical conditions, and methods of sample preparation for analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Vlasenkov and A. P. Makshtas, “Analysis of spatio- temporal distribution pattern of suspended matter in the upper layer of shelf seas of Russian Arctic,” Probl. Arkt. Antarkt., No. 2, 63–71 (2012) [in Russian].

    Google Scholar 

  2. A. V. Drits, E. G. Arashkevich, A. B. Nikishina, V. M. Sergeeva, K. A. Solovyev, and M. V. Flint, “Mesozooplankton grazing impact on phytoplankton in the northern regions of the Kara Sea in autumn,” Oceanology (Engl. Transl.) 55, 595–605 (2015).

    Google Scholar 

  3. A. G. Zatsepin, P. O. Zavialov, V. I. Baranov, V. V. Kremenetskiy, A. A. Nedospasov, S. G. Poyarkov, and V. V. Ocherednik, “On the mechanism of windinduced transformation of a river runoff water lens in the Kara Sea,” Oceanology (Engl. Transl.) 57, 1–7 (2017).

    Google Scholar 

  4. V. V. Zernova, E.-M. Nöthig, and V. P. Shevchenko, “Vertical microalga flux in the northern Laptev Sea (from the data collected by the yearlong sediment trap),” Oceanology (Engl. Transl.) 40, 801–808 (2000).

    Google Scholar 

  5. L. G. Koval’, Zoo- and Necrozooplankton of the Black Sea (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  6. M. D. Kravchishina, A. Yu. Lein, I. N. Sukhanova, V. A. Artem’ev, and A. N. Novigatsky, “Genesis and spatial distribution of suspended particulate matter concentrations in the Kara Sea during maximum reduction of the Arctic ice sheet,” Oceanology (Engl. Transl.) 55, 623–643 (2015).

    Google Scholar 

  7. V. M. Kuptsov, A. P. Lisitzin, V. P. Shevchenko, and V. I. Burenkov, “Suspended matter fluxes to the Laptev Sea bottom sediments,” Oceanology (Engl. Transl.) 39, 543–549 (1999).

    Google Scholar 

  8. A. P. Lisitzyn, “Patterns of rapid and extremely rapid (avalanche) sedimentation: implications for marine oil and gas generation,” Russ. Geol. Geophys. 50, 278–298 (2009).

    Article  Google Scholar 

  9. A. P. Lisitzyn, A. N. Novigatsky, A. A. Klyuvitkin, et al., “Flows of suspended matter in the White Sea, sedimentary stations, and new directions in the study of sedimentary matter,” in The White Sea System (Nauchnyi Mir, Moscow, 2013), Vol. 3, pp. 201–291 [in Russian].

    Google Scholar 

  10. A. P. Lisitzyn, V. P. Shevchenko, M. E. Vinogradov, et al., “Flows of sedimentary matter in the Kara Sea and Ob and Yenisei river estuaries,” Okeanologiya (Moscow) 34, 748–758 (1994).

    Google Scholar 

  11. N. V. Lobus, “Elemental composition of zooplankton in the Kara Sea and the bays on the eastern side of Novaya Zemlya,” Oceanology (Engl. Transl.) 56, 809–818 (2016).

    Google Scholar 

  12. V. N. Lukashin, A. A. Klyuvitkin, A. P. Lisitzin, and A. N. Novigatsky, “The MSL-110 small sediment trap,” Oceanology (Engl. Transl.) 51, 699–703 (2011).

    Google Scholar 

  13. S. V. Lyutsarev and A. V. Smetankin, “Determination of carbon in the water suspended matter”, in Analysis of Organic Matter in the Ocean (Nauka, Moscow, 1980), pp. 46–50.

    Google Scholar 

  14. P. N. Makkaveev, A. A. Polukhin, A. V. Kostyleva, E. A. Protsenko, S. V. Stepanova, and Sh. Kh. Yakubov, “Hydrochemical features of the Kara Sea aquatic area in summer 2015,” Oceanology (Engl. Transl.) 57, 48–57 (2017).

    Google Scholar 

  15. A. B. Nikishina, O. M. Dara, A. V. Drits, et al., “Role of zooplankton in sedimentation of suspended matter in the Blagopoluchiya Bay (Novaya Zemlya Archipelago),” Proceedings of Scientific Conference “Ecosystem of the Kara Sea: New Data of Expedition Studies” (Moscow, 2015), pp. 142–146.

    Google Scholar 

  16. I. N. Sukhanova, M. V. Flint, E. I. Druzhkova, A. F. Sazhin, and V. M. Sergeeva, “Phytoplankton in the northwestern Kara Sea,” Oceanology (Engl. Transl.) 55, 547–560 (2015).

    Google Scholar 

  17. I. N. Sukhanova, M. V. Flint, E. Ju. Georgieva, E.K. Lange, M. D. Kravchishina, A. B. Demidov, A. A. Nedospasov, and A. A. Polukhin, “The structure of phytoplankton communities in the eastern part of the Laptev Sea,” Oceanology (Engl. Transl.) 57, 75–90 (2017).

    Google Scholar 

  18. M. V. Flint, S. G. Poyarkov, A. G. Timonin, and K. A. Soloviev, “The structure of the mesoplankton community in the area of the continental slope of the St. Anna Trough (Kara Sea),” Oceanology (Engl. Transl.) 55, 583–594 (2015).

    Google Scholar 

  19. M. V. Flint, S. G. Poyarkov, and N. A. Rimsky-Korsakov, “Ecosystems of the Russian Arctic-2015 (63rd Cruise of the research vessel Akademik Mstislav Keldysh),” Oceanology (Engl. Transl.) 56, 459–461 (2016).

    Google Scholar 

  20. L. L. Chislenko, Nomograms for Determination of Weight of Aquatic Organisms by Dimensions and Body Shape (Nauka, Leningrad, 1968) [in Russian].

    Google Scholar 

  21. V. P. Shevchenko, V. I. Vedernikov, G. I. Ivanov, et al., “Vertical flows of sedimentary matter in the Barents Sea in summer-autumn,” Proceedings of XIII International Workshop on Marine Geology “Geology of the Seas and Oceans,” Abstracts of Papers (GEOS, Moscow, 1999), Vol. 1, pp. 153–154 [in Russian].

    Google Scholar 

  22. V. P. Shevchenko, G. I. Ivanov, A. A. Burovkin, R. N. Dzhinoridze, V. V. Zernova, L. V. Polyak, and S. S. Shanin, “Sedimentary material flows in the St. Anna Trough and eastern Barents Sea,” Dokl. Earth Sci. 359, 400–403 (1998).

    Google Scholar 

  23. K. O. Buesseler, N. A. Avan, S. MinChen, et al., “An assessment of the use of sediment traps for estimating upper ocean particle fluxes,” J. Mar. Res. 65, 345–416 (2007).

    Article  Google Scholar 

  24. D. Diebel and J. T. Turner, “Zooplankton feeding ecology: contents of fecal pellets of the appendicularian Oikopleura vanhoeffenii,” Mar. Ecol.: Prog. Ser. 27, 67–78 (1985).

    Article  Google Scholar 

  25. I. A. Dmitrenko, S. A. Kirillov, T. Krumpen, et al., “Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: evidence from summer-to-winter hydrographic records of 2007–2009,” Cont. Shelf Res. 30, 1656–1664 (2010).

    Article  Google Scholar 

  26. C. Frangoulis, N. Skliris, G. Lepoint, et al., “Importance of copepod carcasses versus fecal pellets in the upper water column of an oligotrophic area,” Estuarine, Coastal Shelf Sci. 92, 456–463 (2011).

    Article  Google Scholar 

  27. B. Gaye, K. Fahl, L. A. Kodina, et al., “Particulate matter fluxes in the southern and central Kara Sea compared to sediments: bulk fluxes, amino acids, stable carbon and nitrogen isotopes, sterols and fatty acids,” Cont. Shelf Res. 27, 2570–2594 (2007).

    Article  Google Scholar 

  28. B. Gaye-Haake, D. Unger, E.-M. Nöthig, et al., “Particle fluxes from short-term sediment trap deployments in late summer in the southern Kara Sea,” in Siberian River Run-Off in the Kara Sea: Characterization, Quantification, Variability, and Environmental Significance, Ed. by R. Stein, K. Fahl, D. K. Fütterer, (Elsevier, Amsterdam, 2003), pp. 309–328.

    Google Scholar 

  29. V. V. Gordeev and M. D. Kravchishina, “River flux of dissolved organic carbon (DOC) and particulate organic carbon (POC) to the Arctic Ocean: what are the consequences of the global changes?” in Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions, Ed. by J. C. J. Nihoul and A. G. Kostianoy (Springer-Verlag, Dordrecht, 2009), pp. 139–154.

    Google Scholar 

  30. H. J. Hirche, K. N. Kosobokova, B. Gaye-Haake, et al., “Structure and function of contemporary food webs on Arctic shelves: a panarctic comparison. The pelagic system of the Kara Sea—communities and components of carbon flow,” Progr. Oceanogr. 71, 288–313 (2006).

    Article  Google Scholar 

  31. O. Holm-Hansen and B. Riemann, “Chlorophyll “a” determination: improvements in methodology,” Oikos 30, 438–447 (1978).

    Article  Google Scholar 

  32. A. Kubryakov, S. Stanichny, and A. Zatsepin, “River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data,” Remote Sens. Environ. 176, 177–187 (2016).

    Article  Google Scholar 

  33. C. Lalande, S. Belanger, and L. Fortier, “Impact of a decreasing sea ice cover on the vertical export of particulate organic carbon in the northern Laptev Sea, Siberian Arctic Ocean,” Geophys. Res. Lett. 36, L21604 (2009).

    Article  Google Scholar 

  34. C. Lalande, J. M. Grebmeier, P. Wassmann, et al., “Export fluxes of biogenic matter in the presence and absence of seasonal sea ice cover in the Chukchi Sea,” Cont. Shelf Res. 27, 2051–2065 (2007).

    Article  Google Scholar 

  35. C. Lalande, E.-M. Nöthing, R. Somavilla, et al., “Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean,” Global Biogeochem. Cycles 28, 571–583 (2014).

    Article  Google Scholar 

  36. A. G. Lewis and J. P. M. Syvitski, “The interaction of plankton suspended sediments in fjords,” Sediment. Geol. 36, 81–92 (1983).

    Article  Google Scholar 

  37. S. B. Moran, R. P. Kelly, K. Hagstrom, et al., “Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves,” Deep Sea Res., Part II 52, 3427–3451 (2005).

    Article  Google Scholar 

  38. K. Olli, R. C. Wexels, P. Wassmann, et al., “Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea,” J. Mar. Syst. 38, 189–204 (2002).

    Article  Google Scholar 

  39. U. Passow and C. A. Carlson, “The biological pump in a high CO2 world,” Mar. Ecol.: Progr. Ser. 470, 249–271 (2012).

    Article  Google Scholar 

  40. A. Pasternak, E. Arashkevich, R. C. Wexels, et al., “Seasonal variation in zooplankton and suspended fecal pellets in the subarctic Norwegian Balsfjorden, in 1996,” Sarsia 85, 439–452 (2000).

    Article  Google Scholar 

  41. M. Reigstad, R. C. Wexels, P. Wassmann, and T. Ratkova, “Vertical export of particulate organic carbon: attenuation, composition and loss rates in the northern Barents Sea,” Deep Sea Res., Part II 55, 2308–2319 (2008).

    Article  Google Scholar 

  42. U. Riebesell, A. Kortzinger, and A. Oschlies, “Sensitivities of marine carbon fluxes to ocean change,” Proc. Natl. Acad. Sci. U.S.A. 106, 20602–20609 (2009).

    Article  Google Scholar 

  43. B. Rost, I. Zondervan, and D. Wolf-Gladrow, “Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions,” Mar. Ecol.: Progr. Ser. 373, 227–237 (2008).

    Article  Google Scholar 

  44. M. Sampei, H. Sasaki, H. Hattori, et al., “Significant contribution of passively sinking copepods to the downward export flux in Arctic waters,” Limnol. Oceanogr. 54, 1894–1900 (2009).

    Article  Google Scholar 

  45. R. F. Spielhagen, K. Werner, S. A. Sorensen, et al., “Enhanced modern heat transfer to the Arctic by warm Atlantic water,” Science 331, 450–453 (2011).

    Article  Google Scholar 

  46. J. P. M. Syvitsky and A. G. Lewis, “Sediment ingestion by Tigriopus californicus and other zooplankton: material transformation and sedimentological considerations,” J. Sediment. Petrol. 50 (3), 0869–0880 (1980).

    Article  Google Scholar 

  47. K. W. Tang and D. T. Elliott, “Copepod carcasses: occurrence, fate and ecological importance,” in Copepods: Diversity, Habitat and Behavior, Ed. by L. Seuront (Nova Science, New York, 2013), pp. 1–19.

    Google Scholar 

  48. J. T. Turner, “Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump,” Progr. Oceanogr. 130, 205–248 (2015).

    Article  Google Scholar 

  49. T. Volk and M. I. Hoffert, “Ocean carbon pumps: analysis of relative strengths and efficiencies in oceandriven atmospheric CO2 changes,” in The Carbon Cycle and Atmospheric CO2: Natural variations Archaean to Present, Ed. by E. T. Sundquist and W. S. Broecker (Wiley, New York, 1985), Vol. 32, pp. 99–110.

    Google Scholar 

  50. P. Wassmann, K. Olli, R. C. Wexels, and C. Svensen, “Ecosystem function, biodiversity and vertical flux regulation in the twilight zone,” in Marine Science Frontiers for Europe, Ed. by G. Wefer, F. Lamy, and F. Mantoura (Springer-Verlag, New York, 2003), pp. 279–287.

    Chapter  Google Scholar 

  51. P. Wassmann, D. Slagstad, R. C. Wexels, and M. Reigstad, “Modeling the ecosystem dynamics of the Barents Sea including the marginal ice zone. II. Carbon flux and interannual variability,” J. Mar. Syst. 59, 1–24 (2006).

    Article  Google Scholar 

  52. C. Wegner, J. A. Hölemann, I. Dmitrenko, et al., “Seasonal variations in Arctic sediment dynamics—evidence from 1-year records in the Laptev Sea (Siberian Arctic),” Global Planet. Change 48, 126–140 (2005).

    Article  Google Scholar 

  53. R. Wexels, P. Wassmann, K. Olli, et al., “Seasonal variation in production, retention and export of zooplankton fecal pellets in the marginal ice zone and central Barents Sea,” J. Mar. Syst. 38, 175–188 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Drits.

Additional information

Original Russian Text © A.V. Drits, M.D. Kravchishina, A.F. Pasternak, A.N. Novigatsky, O.M. Dara, M.V. Flint, 2017, published in Okeanologiya, 2017, Vol. 57, No. 6, pp. 934–948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drits, A.V., Kravchishina, M.D., Pasternak, A.F. et al. Role of Zooplankton in the Vertical Mass Flux in the Kara and Laptev Seas in Fall. Oceanology 57, 841–854 (2017). https://doi.org/10.1134/S0001437017060029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437017060029

Navigation