Log in

Random Processes with Stationary Increments and Composite Spectra

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A technique for deriving and interpreting fractal geophysical processes with power-law spectra of a different nature is described. Examples include the energy spectra of atmospheric processes and their role in the mixing of impurities, the frequency spectra of sea wind waves, and the spatial spectra of the surface relief of celestial bodies in the solar system. A.N. Kolmogorov’s works in the early 1930s, which were subsequently developed by his followers A.M. Obukhov, A.S. Monin, A.M. Yaglom, and others, are the most important for this. Kolmogorov’s probabilistic laws serve as a model for the analysis of the processes under consideration by methods of the similarity and dimensionality theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. N. Kolmogorov, “Zufällige Bewegungen,” Ann. Math. 35, 116–117 (1934).

    Article  Google Scholar 

  2. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics, Vol. 2 (Nauka, Moscow, 1965; MIT Press, Cambridge, MA, 1975).

  3. A. M. Obukhov, “Description of turbulence in terms of Lagrangian variables,” Adv. Geophys. 6, 117–119 (1959).

    Article  Google Scholar 

  4. G. S. Golitsyn, “Laws of random walks derived by A.N. Kolmogorov in 1934,” Russ. Meteorol. Hydrol. 43, 135–142 (2018).

    Article  Google Scholar 

  5. G. I. Barenblatt, Scaling (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  6. G. I. Barenblatt, Self-Similarity Phenomena: Analysis of Dimensions and Scaling (Intellekt, Dolgoprudnyi, 2009) [in Russian].

  7. G. I. Barenblatt and Ya. B. Zel’dovich, “Intermediate asymptotics in mathematical physics,” Russ. Math. Surveys 26, 45–61 (1971).

    Article  Google Scholar 

  8. A. M. Obukhov, “Local structure of atmospheric turbulence,” Dokl. Akad. Nauk SSSR 67 (4), 643–646 (1949).

    Google Scholar 

  9. G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Events (Krasand, Moscow, 2013) [in Russian].

    Google Scholar 

  10. G. D. Nastrom and K. S. Gage, “A climatology of atmospheric wave-number spectra of wind and temperature observed by commercial aircraft,” J. Atmos. Sci. 42 (4), 950–960 (1984).

    Article  Google Scholar 

  11. E. Lindborg, “Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?” J. Mech. 388, 259–288 (1999).

    Google Scholar 

  12. G. K. Batchelor, “Computation of the energy spectrum in homogeneous two-dimensional turbulence,” Phys. Fluids 12 (Suppl. 2), 233–239 (1969).

    Article  Google Scholar 

  13. R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence,” Phys. Fluids 10 (7), 1417–1423 (1967).

    Article  Google Scholar 

  14. H. Kelley and W. I. Goldberg, “Two-dimensional turbulence: a review of some recent experiments,” Rep. Prog. Phys. 65, 845–894 (2002).

    Article  Google Scholar 

  15. J. Charney, “Geostrophic turbulence,” J. Atmos. Sci. 29 (6), 1087–1095 (1971).

    Article  Google Scholar 

  16. R. H. Kraichnan, “Inertial-range transfer in two- and three-dimensional turbulence,” J. Fluid Mech. 47 (3), 525–536 (1971).

    Article  Google Scholar 

  17. J. N. Koshyk and R. Hamilton, “The horizontal kinetic energy spectrum and spectral budget simulated by a troposphere-stratosphere-mesosphere GCM,” J. Atmos. Sci. 58 (4), 329–348 (2001).

    Article  Google Scholar 

  18. G. I. Taylor, “Eddy motion in the atmosphere,” Philos. Trans. R. Soc., A 215, 1–26 (1915).

  19. L. F. Richardson, “Atmospheric diffusion shown on a distance-neighbour graph,” Proc. R. Soc. London, Ser. A 110 (756), 708–731 (1926).

    Google Scholar 

  20. L. F. Richardson, “A search for the law of atmospheric diffusion,” Beitr. Phys. Atmos. XV, 24–29 (1929).

    Google Scholar 

  21. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions. I. Basic Results (Springer, New York, 1986).

    Google Scholar 

  22. M. A. Longuet-Higgins, “A theory of the origin of microseisms,” Philos. Trans. R. Soc. London 243, 1–35 (1953).

    Google Scholar 

  23. S. A. Kitaigorodskii, “Some applications of similarity theory methods to the analysis of wind waves as a probabilistic process,” Izv. Akad. Nauk, Ser. Geofiz., No. 1, 73–82 (1962).

  24. V. E. Zakharov and N. N. Filonenko, “Energy spectrum for stochastic oscillations of the surface of a liquid,” Dokl. Earth Sci. 170 (6), 1292–1295 (1966).

    Google Scholar 

  25. Y. Toba, “Total balance in the air-sea boundary processes: III. On the spectrum of wind waves,” J. Oceanogr. Soc. Jpn. 29 (3), 209–229 (1973).

    Article  Google Scholar 

  26. Y. Toba, “Stochastic form of the growth of wind waves in a single parameter representation with physical implications,” J. Phys. Oceanogr. 8 (5), 494–507 (1978).

    Article  Google Scholar 

  27. G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin, “Turbulent flow at very large Reynolds numbers,” Usp. Fiz. Nauk 184 (3), 265–272 (2014).

    Article  Google Scholar 

  28. I. N. Davidan, L. I. Lopatukhin, and V. A. Rozhkov, Wind Waves as a Probabilistic Hydrodynamic Process (Gidrometeoizdat, Leningrad, 1978) [in Russian].

    Google Scholar 

  29. O. M. Phillips, Dynamics of the Upper Ocean (Cambridge Univ. Press, Cambridge, 1977).

    Google Scholar 

  30. Yu. L. Doronin, The Interaction of Atmosphere and Ocean (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  31. L. F. Titov, Wind Waves (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  32. K. Hasselmann, T. P. Barnett, E. Bows, et al., “Measurements of wind-wave growth and swell decay during Joint North Sea Wave Project (JONSWAP),” Dtsch. Hydrogr. Z., Suppl. 12 (A8) (1973).

  33. V. E. Zakharov, “Analytic theory of a wind driven sea,” Proc. IUTAM 26, 43–58 (2018).

  34. G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, Dynamics and Modelling of Ocean Waves (Cambridge Univ. Press, New York, 1994).

    Book  Google Scholar 

  35. E. Gagnaire-Renou, M. Benoit, and S. I. Badulin, “On weakly turbulent scaling of wind sea in simulations of fetch-limited growth,” J. Fluid Mech. 669, 178–213 (2011).

    Article  Google Scholar 

  36. G. S. Golitsyn, “Coefficient of horizontal eddy diffusion of a tracer on the water surface as a function of the wave age,” Izv., Atmos. Ocean. Phys. 47, 393 (2011).

    Article  Google Scholar 

  37. G. S. Golitsyn and O. G. Chkhetiani, “Effect of viscosity on admixture horizontal diffusion in the wind wave field,” Izv., Atmos. Ocean. Phys. 50, 547–553 (2014).

    Article  Google Scholar 

  38. E. B. Gledzer and G. S. Golitsyn, “Structure of the terrain and gravitational field of the planets: Kaula’s rule as a consequence of the probability laws by A.N. Kolmogorov and his school,” Dokl. Earth Sci. 485, 391–394 (2019).

    Article  Google Scholar 

  39. W. M. Kaula, Theory of Satellite Geodesy (Bleisdell, Waltham, MA, 1966).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper commemorates our teachers and scientific supervisors Kolmogorov, Obukhov, Yaglom, and Monin. We are grateful to a reviewer for their careful reading and useful comments.

Funding

This work was supported in part by the Presidium of the Russian Academy of Sciences, program “Nonlinear Dynamics Fundamental Problems and Applications”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. S. Golitsyn or M. I. Fortus.

Additional information

Translated by V. Arutyunyan

APPENDIX

APPENDIX

The theory of random (stationary and nonstationary) processes was developed by Kolmogorov [1] and Obukhov, Yaglom, and Monin (see [2]). In a systematic and strict sense, the theory of stationary and related random processes and fields is formulated by Yaglom in [21]. Stationary random processes (respectively, processes with stationary nth increments) are usually considered functions of time. They correspond to statistically homogeneous processes (along with processes with homogeneous nth increments) if they are functions of the spatial argument. For example, if acceleration is a stationary random process, its time integral (velocity) will be a random process with stationary first-order increments (n = 1). Here, if \(S\left( \omega \right)\) is the acceleration spectrum, the velocity spectrum is \({{S\left( \omega \right)} \mathord{\left/ {\vphantom {{S\left( \omega \right)} {{{\omega }^{2}}}}} \right. \kern-0em} {{{\omega }^{2}}}}{\text{;}}\) it follows from here that, as \(\omega \to 0,\) this spectrum can grow infinitely. In this case, the ordinary spectral Fourier representation of the correlation function has no sense and is therefore replaced by structure function \(D_{u}^{{\left( 1 \right)}}\left( \tau \right)\) and its spectral representation is of the Fourier type. Subsequent integration yields the coordinates as a random process with stationary increments of the second order (n = 2), and structure functions \({{D}^{{\left( 2 \right)}}}\left( \tau \right)\) (or, \({{D}^{{\left( 2 \right)}}}\left( r \right){\text{,}}\) as used in this paper) still remain as a working tool. For example, for any n, the velocity structure function,

$$D_{u}^{{\left( n \right)}}\left( \tau \right) = \left\langle {{{{\left| {\Delta _{\tau }^{{\left( n \right)}}u\left( t \right)} \right|}}^{2}}} \right\rangle ,$$
(A1)

where \(\Delta _{{\tau }}^{{\left( n \right)}}u\left( t \right)\) is an increment of the nth order:

$$\Delta _{{\tau }}^{n}u\left( t \right) = \sum\limits_{k = 0}^n {{{{\left( { - 1} \right)}}^{n}}C_{n}^{k}u\left( {t - k\tau } \right)} ,$$
(A2)

is a Fourier transform of the corresponding spectrum \(S_{u}^{{\left( n \right)}}\left( \omega \right){\text{:}}\)

$$D_{u}^{{\left( n \right)}}\left( \tau \right) = {{2}^{n}}\int\limits_{ - \infty }^\infty {{{{\left( {1 - \cos \omega \tau } \right)}}^{n}}S_{u}^{n}\left( \omega \right)d\omega } $$
(A3)

(the angle brackets mean averaging). For a power-law spectrum, there is a simple formula relating it to the corresponding structure function: if \({{D}^{{\left( n \right)}}}\left( \tau \right) = C{{\left| \tau \right|}^{\gamma }},\) we have

$$\begin{gathered} {{S}^{{\left( n \right)}}}\left( \omega \right) = \frac{{{{C}_{1}}}}{{{{{\left| \omega \right|}}^{{\gamma + 1}}}}}, \\ {{C}_{1}} = \frac{C}{{{{2}^{{n + 1}}}\int\limits_0^\infty {{{{\left( {1 - \cos \omega \tau } \right)}}^{n}}{{x}^{{ - n - 1}}}dx} }}. \\ \end{gathered} $$
(A4)

Specifically, for first-order increments (n = 1), we have

$${{C}_{1}} = \frac{C}{{4\int\limits_0^\infty {\left( {1 - \cos x} \right){{x}^{{ - \gamma - 1}}}dx} }} = \frac{{2\pi C}}{{\Gamma \left( {\gamma + 1} \right)\sin \left( {{{\pi \gamma } \mathord{\left/ {\vphantom {{\pi \gamma } 2}} \right. \kern-0em} 2}} \right)}},$$
(A5)

where \(0 < \gamma < 2\) [21].

If the first-order increments are not statistically stationary and the second-order increments are stationary (and, accordingly, the derivatives are statistically stationary), the characteristics of these processes are structure function \({{D}^{{\left( 2 \right)}}}\left( \tau \right)\) and the spectrum \({{S}^{{\left( 2 \right)}}}\left( \omega \right)\) (relations (A3) and (A4), where \(n = 2,\)\(2 \leqslant \gamma < 4\)). For this case, we derived the formula

$${{C}_{1}} = \frac{C}{{8\int\limits_0^\infty {{{{\left( {1 - \cos x} \right)}}^{2}}{{x}^{{ - {\gamma } - 1}}}dx} }} = \frac{{C\left( {{{2}^{{{\gamma } + 1}}} - {{2}^{3}}} \right)\pi }}{{\Gamma \left( {\gamma + 1} \right)\sin ({{ - \pi \gamma } \mathord{\left/ {\vphantom {{ - \pi \gamma } 2}} \right. \kern-0em} 2})}}$$
(A6)

(the denominator in (A6) is positive for \(2 < \gamma < 4\)). Table A1 presents the values of coefficient \(k = {{{{C}_{1}}} \mathord{\left/ {\vphantom {{{{C}_{1}}} {{{C}_{2}}}}} \right. \kern-0em} {{{C}_{2}}}}\) calculated by formulas (A5) for \(0 < \gamma < 2\) and (A6) for \(2 \leqslant \gamma < 4.\) For \(\gamma = 2,\) passing to the limit, we obtain \(k\left( {\gamma = 2} \right) = 5.54.\)

Table A1.   Values of \(k\)

A strict systematic description of the theory of stationary and related random processes and fields can be found in the two-volume monographs by Monin and Yaglom [2] and Yaglom [21].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golitsyn, G.S., Fortus, M.I. Random Processes with Stationary Increments and Composite Spectra. Izv. Atmos. Ocean. Phys. 56, 364–372 (2020). https://doi.org/10.1134/S0001433820030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820030081

Keywords

Navigation